III. THE LAKES OF NORTHEASTERN INDIANA # By # Will Scott (The lakes of northeastern Indiana. Dept. Conserr., Div. Fish and Game, State Ind. Pub. 107: 57-145. Scott, W., R. Hile, and HT Spieth. 1938.) # III. THE LAKES OF NORTHEASTERN INDIANA рÀ WILL SCOTT # CONTENTS С | INTRODUCTION | | | | Page | |--|-----|-----------|------|----------| | Introduction. | | |
 |
61 | | ACKNOWLEDGMENTS | , | |
 |
62 | | DRAINAGE | | | | | | CERCIATION AND LAKE FORMATION | | | | | | CARBONATES | | | | | | OXIGEN | | | | | | THE FLANKTON | | | | | | JAMES LAKE—ITS PECULIARITIES | | |
 |
. 73 | | RELATION OF DISSOLVED OXYGEN AND THE CISCO | | |
 |
. 75 | | LITERATURE CITED | ٠ | |
 |
. 78 | | Tables | | • • • • • |
 |
. 81 | | | . : | | | 00 | # INTRODUCTION This study is concerned with the principal lakes of four counties of northeastern Indiana, i. e., Steuben, LaGrange, Noble, and Whitley. Not all the lakes of these counties have been examined, but the number studied includes all types and gives a fair and sound picture of conditions in this region. The summer of 1929 was devoted to the lakes of Steuben County. A temporary camp and laboratory was set up at the state park on Lake James. The central location of this point and the special interest attaching to Lake James made this location very advantageous. In 1930 the lakes of the other three counties were reached from the Biological Station of Indiana University. A smaller number of lakes were examined in 1930 because the lakes were farther apart and the consequent travel greater. It is frankly an exploratory study. Dr. W. M. Tucker, working for the Department of Conservation, had mapped Lakes James, Snow, Crooked, Clear, and Gage in Steuben County; Adams and Oliver Lakes in Noble County and Crooked, Shriner, and Round Lakes in Whitley County. Other than this nothing was known of this group except the incidental work done on them by Dayer in his work on the topography and glaciation of the region, and the mere superficial descriptions of some of them by various people. It is well known that the summer temperature and the consequent distribution of dissolved oxygen, and carbon dioxide together with the amount of carbonates in a lake are fundamental elements in their economy. This together with the summer plankton gives a fair picture of the nature of any lake. These facts have been determined and expressed in a series of 68 tables. These data are discussed in the body of the paper and some deductions are made. Certain difficulties have been met. The most important is the lack of topographic maps of the region. Problems connected with the carbonates are intimately related to the topography and their solution awaits the construction of such maps. A minor difficulty has been the naming of the lakes discussed in the paper. The same lake often has more than one name; for instance, Hamilton and Fish refer to the same lake, as do Garden and Golden. The same name is often applied to different lakes. The name Crooked is applied to rather important lakes in both Steuben and Whitley Counties. To obviate this difficulty a table is introduced giving the township, range, and sections occupied in part or in whole by each lake. # ACKNOWLEDGMENTS It is a pleasure to acknowledge the hearty cooperation of the late George N. Mannfield, Superintendent of the Division of Fish and Game, and of his successor Walter Shirts, a man of sound judgment. The field assistants in 1929 were Herman T. Spieth, Raymond J. Myers, and Ancil D. Holloway. In 1930 they were Raymond J. Myers and Mychyle W. Johnson. Their careful work adds much to the quality of the results. In the laborious work of counting the plankton, I was assisted by Miss Mary I. Spilman and Miss Lois E. Smith. I am also indebted to Dr. Harold for calculating the coefficient of correlation between the carbonates and certain diatoms. The Graduate School of Indiana University furnished funds for the apparatus and incidental expenses. I am especially grateful to Dr. Fernandus Payne, its Dean and my colleague, for his kindly encouragement. TABLE No. 1. Location of lakes by township, range, and section. The serial numbers at the left correspond to the numbers on fig. 1, which is the map of the four counties. | | Lake | TN | RE | Sec. | |-----|------------------------|----------|----------|--------------------| | 1. | Adams, Lagrange | 36 | 10 | 23-24-25-26 | | 2. | Cedar, Lagrange | 38 | 10 | 21-22 | | 3. | Cedar, Whitley | 32 | 9 | 2-11-12 | | 4. | Center, Steuben | 37 | 13 | 22 | | 5. | Clear, Steuben | 38 | 15 | 17-18-19-20-29-30 | | 6. | Crooked, Steuben. | 37
37 | 13
12 | 6-7-8-9-16-17
1 | | 7. | Crooked, Whitley | 32
33 | 9 | 3-4
33-34 | | 8. | Fox, Steuben | 37 | 13 | 28-33-34 | | 9. | Gage, Steuben | 38
37 | 12
12 | 34-35 | | 10. | George, Steuben | 38 | 13 | 14-15+Mich. | | 11. | Golden, Steuben | 36
36 | 12
12 | 1
5-6-8 | | 12. | Hamilton, Steuben | 36 | 14 | 28-33-21-27 | | 13. | Hog, Steuben | 38 | 13 | 17+Mich. | | 14. | Hogback, Steuben | 37
37 | 12
13 | 25-36
31 | | 15. | James, Steuben | 38
37 | 13
13 | 28-33-34
3-4-10 | | 16. | Jimerson, Steuben | 38
37 | 13
13 | 30-31-32
5 | | 17. | Lake Pleasant, Steuben | 38
38 | 13
12 | 18-
12-13+Mich. | | 18. | Long, Lagrange | 36 | 11 | 22-26-27 | | 19. | Long, Steuben | 36 | 13 | 15-16 | | 20. | Loon, Steuben | 37 | 13 | 20 | | 21. | Marsh, Steuben | 38 | 13 | 25 | | 22. | Oliver, Lagrange | 36 | 10 | 17-18-19-20 | | 23. | Otter (L.), Steuben | 38 | 13 | 26-27 | | 24. | Otter (U.), Steuben | 38 | 13 | 26-27 | | 25. | Pleasant L., Steuben | 36 | 13 | 22-23-14-15 | | 26. | Pretty, Lagrange | 36 | 11 | 15-16 | | 27. | Round, Whitley | 32 | 9 | 12 | | 28. | Shriner, Whitley | 32 | 9 | 2-11-12 | | 29. | Silver, Steuben | 37 | 13 | 29-30-31-32 | | 30. | Snow, Steuben | . 38 | 13 | 21-22-27-28 | | 31. | Big Turkey Lagrange. | 36
36 | 12
11 | 7-18
13 | | 32. | Twin (N.), Lagrange | 38 | 9 | 23 | | 33. | Twin (S.), Lagrange | 38 | 9 | 26-27 | | 34 | Wallen, Noble | . 35 | 13 | 13 | TN—Township North. RE—Range East. SEC.—Section. Serial numbers indicate lake names on map No. 1. ### DRAINAGE The four counties Steuben, LaGrange, Noble, and Whitley, which include the lakes of this report, form a "parting of the ways" so far as surface drainage is concerned. From them the waters may go to Lake Erie through the Maumee, to Lake Michigan through the St. Joseph of Michigan, or to the Gulf of Mexico through the tributaries of the Wabash which in turn empties into the Ohio and thence to the Mississippi and the Gulf. In Whitley County, Cedar, Shriner and Round Lakes are drained by the Eel River, which is tributary to the Wabash. Over a low divide is Crooked Lake of Whitley County, which empties into the Wabash through the Tippecanoe River. Adams and Oliver Lakes of LaGrange County and Wallen Lake of Noble County are tributary to the Elkhart River. Fox, Pleasant, Long, Golden, and Silver Lakes of Steuben County; Big Turkey Lake of Steuben and LaGrange Counties; and Long, Pretty, North Twin, and South Twin Lakes of LaGrange County all empty into the Pigeon River. Faun River drains two series in Steuben County. The first series is composed of Marsh, Upper Otter, Lower Otter, George, Snow, James, and Jimerson Lakes. The second consists of Center, Loon, Crooked, and Gage. In addition to this, the Faun River drains Cedar Lake of LaGrange County. These three rivers, the Elkhart, the Pigeon, and the Faun, are tributaries of the St. Joseph River of Michigan. The St. Joseph also drains Lake Pleasant and Hog Lake. The outlet of Clear Lake flows northwest and south through Michigan and Ohio to St. Joseph of the Maumee. Hamilton reaches the same stream through Fish Creek. # GLACIATION AND LAKE FORMATION The lakes of this region are due to the Pleistocene glaciation. While much glacial drift was undoubtedly brought into Indiana by the earlier ice advances, the present distribution and topography are due to the last or Wisconsin ice sheet. This ice sheet advanced into Indiana in three great lobes, which were given direction by the basins of Lake Michigan, Saginaw Bay of Lake Huron, and the combined influences of Lakes Huron and Eric. Consequently, these lobes are called the Michigan, the Saginaw, and the Huron-Erie. Of these three lobes the Huron-Erie advanced into the northern part of eastern Indiana from the northeast; the Michigan lobe advanced into western Indiana from the north, and between these two came the Saginaw Lobe. The influence of the Michigan Lobe is outside the area considered in this paper and will not be discussed. Leverett (1915) has determined that the Saginaw Lobe retreated first. The general climatic conditions at the same latitude must have been uniform over all three lobes. The early retreat of the Saginaw indicates that it had less mass and power than the other two. This fact and the form of the moraines (Leverett, L. C., map No. VI.) indicate that ice derived from the Saginaw lobe did not extend south of the present Wabash River nor its major tributary, the Eel River. This massive system of moraines extends from the northeast corner of the state southwest for about seventy-five miles. In this mass occur the lakes which are discussed in this paper. While Dryer (1891, pp. 114-120) and Leverett (I. c.) attribute most of this material to the work of the Huron-Erie lobe, the region must be regarded as interlobate in the sense that both lobes influence it. From this mass which coalesces in Steuben and a part of Noble and DeKalb Counties, there extends southwest three limbs. The eastern one is the ill defined Salamonie moraine, the middle one becomes the Mississinewa. Both of these are clearly terminal moraines of the Huron-Erie lobe. The third and western of these three extends to the southwest, paralleling the Eel River from Whitley County to
Logansport. It was along this western mass and in the coalesced moraines from Whitley County to the northeast that the great ice lobes were in contact at the time of the maximum development of the Saginaw lobe. Not only did each contribute material from its lateral and terminal moraine, but as the opposing masses varied both in thickness and force, there must have been local over-riding of one mass by the other. For reasons already given, the Huron-Erie usually did the over-riding. This resulted in buried masses of ice which eventually, on melting, caused lake beds and outwash channels. In the case of Tippecanoe Lake and the Barbee system, it was determined (Scott, 1915, p. 5) that the drainage lines were between finger-like lobes of ice. Great water-laid deposits were laid down between masses of ice. When the ice melted, the anomalous condition was produced, namely, lakes separated by water-laid ridges. Dryer (1891, p. 133) accurately describes the condition in Steuben County as two great moraines running northeast to southwest and the streams running to the northwest. Three of these streams follow channels through the western and more massive of these two moraines. His interpretation that these channels antedate the moraines is incorrect. Also his interpretation that they formed outwash channels from the Huroh-Erie Lobe is untenable, unless it is assumed that there were great masses of stagnant ice underlying these water courses and that the subsequent melting of these ice masses caused the lakes now found in these vallevs. The accurate interpretation of this whole interlobate region must await detailed studies. These studies must include the making of a topographic map, the correlation of the logs of wells, study of the water stratified drift, outwash channels, and the identification of the materials of the deposits and their point of origin. Until these data are at hand speculation as to details is futile. ### CARBONATES These lakes are all relatively hard water lakes. The "hardness" is due to carbonates, chiefly those of calcium, although a smaller amount of magnesium is usually present. These carbonates vary from 24.96 cc. of carbon dioxide per liter in Loon Lake to 54.73 in Golden Lake. The carbonates are leached from the glacial deposits above the lake levels, and their primary source is the limestones and dolomites of the Devonian and Silurian deposits to the northeast. They are found on the shores of Lakes Huron and Erie, on the east side of the "thumb" of Michigan, in Ohio, and in southern Ontario. These glacial deposits are very heterogenous. Many analyses will have to be made before any significant average is obtained. Collections fifteen to twenty feet below the surface in a fresh gravel pit near Winona Lake averaged 9.4% of calcium carbonate. Besides this little known factor, the amount of carbonate in the moraines, two processes seem to influence the amount of carbonates in a lake, namely, the leaching of the carbonates from the moraine above the lake level and the precipitation by photosynthesis of the carbonates from the lake water as marl. The first of the processes increases the carbonates while the second reduces it in amount. When a lake is perched high in the moraines, the water is softer than when the level of the lake is much lower than the surrounding moraines. For instance, near the divide between the Faun and Pigeon Rivers lie Center and Loon Lakes on one side, and Fox and Silver Lakes on the other. bonates average respectively 31.92, 24.96, 29.72 and 31.26. At lower elevations in this same moraine and river valleys lie Long, Garden, and Hogback Lakes on one side and Marsh, Otter and James on the other—whose carbonates average 52.39, 54,73, 44.49, 47.25, 45.96 and 38.00, respectively. This is illustrated also in the series of lakes whose drainage unites to form the Faun River. The largest lake in one series is James Lake, and in the other is Crooked Lake. Approximately a mile apart they lie, but with a difference in elevation of 23.5 feet (Tucker, 1922, p. 400). The average carbonates for Crooked Lake is 26.37 while that for James is 38.00. The James series, with their carbonates, consist of Marsh 48.95, Upper Otter 47.45, Lower Otter 41.02, Snow 41.00, James 38.00, Jimerson 36.67. The Crooked Lake series follows: Center 31.92, Loon 24.96, Crooked 26.87, Gage 30.22. The arithmetical average for the perched lakes, i. e., the Crooked Lake series, is 28.36, while that for the lower lake series is 42.18. The "softening" of lakes by photosynthesis is the result of the following well known facts. The carbonates in solution in lake water are in the form of the bicarbonate. In photosynthesis the plants not only use the free carbon dioxide in solution, but are also able to use the second radical of the bicarbonate, the so-called "half bound" carbon dioxide. This leaves the normal carbonate which is precipitated as "marl." In a series of lakes whose difference in level is slight and which are conneted by streams of considerable volume, the amount of carbonate in solution is gradually reduced. This is best illustrated in the series Marsh, Upper Otter, Lower Otter, Snow, James, and Jimerson Lakes cited above. In other instances variations in leaching caused by variation in the differential between the lake level and the level of the surrounding moraines overbalance the effect of photosynthesis. In the series of lakes which is tributary to the Pigeon River, Pleasant Lake is little below the level of the surrounding land while farther down lies Golden and Hogback surrounded by high moraines. The former has 27.15 cc. carbonates while the latter have 54.73 and 44.49, respectively. Golden is the highest in carbonates of any lake examined in this study. | | | | SURFACE AND BOTTOM | | | | | | | | | | |------|-----------------|--------------|--------------------|---------------------|--------------|-------------|-------------|----------------|----------------|----------------|--|--| | _ | Lake | Depth | | т | (| Oz | | 2 Free | Сь | | | | | 1. | Center | 5.
5. | 23.7
25. | $\frac{18.9}{24.4}$ | 3.57
5.38 | 0 | .74 | 6.97
5.68 | 30.37
30.15 | 33.86
32.12 | | | | 2. | Clear | 32.50
30. | 22.2
24.2 | 10.4
10.2 | 5.71
6.41 | .08
1.58 | 99
-1.23 | 5.72
4.94 | 24.40
24.96 | 28.18
27.18 | | | | 3. | Crooked | 21.
23. | 26.7
22.2 | 10.6
10.4 | 5.91
5.5 | 0.8 | 0 | 7.85
1.5 | 22.93
24.63 | 28.79
28.11 | | | | 4. | Fox | 17.5 | 24.4 | 10.8 | 6.2 | 0 | -1.22 | 5.13 | 26.42 | 33.02 | | | | 5. | Golden | 9.5 | 26.1 | 11.7 | ~5.15 | 0 | 3.19 | 18.45 | 46.00 | 63.46 | | | | 6. | Gage | 21.
21.5 | 24.4
22.2 | 10.6
10.6 | 5.31
5.9 | 0 | 99 | 8.46
5.47 | 26.64
28.86 | 39.59
31.39 | | | | 7. | George | 25.
25. | 25.6
23.3 | 11.1
11.1 | 6.23
5.7 | .1 | 0 | 6.47
5.47 | 27.63
30.60 | 34.86
33.09 | | | | 8. | Hamilton (Fish) | 19.
19. | 27.2
24.4 | 11.7
11.7 | 6.56
7.2 | .05 | 73
-1.23 | 7.32
9.63 | 24.40
26.44 | 29.03
30.39 | | | | 9. | Hog | 9. | 26.6 | 13.3 | 6.09 | . 34 | 0 | -7.03 | 27.92 | 36.54 | | | | 10. | Hogback | 5.5
8. | 24.4
24.4 | 15.6
13.9 | 6.03
5.05 | 0 | 0 | 17.25
16.79 | 40.86
40.17 | 58.21
48.12 | | | | 11. | Jimerson | 17. | 24.4 | 10. | 5.57 | .06 | 0 | 5.68 | 33.61 | 39.54 | | | | 12. | Lake Pleasant. | 10. | 25.6 | 14.4 | 5.57 | .21 | 0 | 4.54 | 24.97 | 28.60 | | | | 13. | Long | 9.5 | 24.4. | 12.2 | 5.33 | 0 | .6 | 5.74 | 47.72 | 57.07 | | | | 14. | Loon | 4. | 26.7 | 21.4 | 4.76 | 1.99 | .98 | 3.93 | 24.10 | 25.83 | | | | 15. | Marsh | 11. | 25.6 | 10. | 6.73 | . 10 | 0 | 9.27 | 50.75 | 44.16 | | | | 16. | (Lower) Otter. | 12. | 24.8 | 10. | 5.89 | .11 | - 0 | 6.92 | 42.01 | 40.03 | | | | 17. | (Upper) Otter. | 10. | 25.6 | 10.6 | 6.20 | .07 | 0 | 6.40 | 50.66 | 41.27 | | | | 18. | Pleasant Lake. | 13. | 25.9 | 11.7 | 5.7 | .67 | 0 | 5.13 | 24.40 | 29.84 | | | | 19. | Silver | 11. | 25. | 11.7 | 5.00 | . 10 | 0 | 8.17 | 26.33 | 36.09 | | | | Dept | h 30 + Clear | | | | | | | | | | | | __opin oo | Oicin TABLE No. 2. Summary table for the lakes of Steuben County. ²⁰⁻²⁹ Crooked, Gage, George. ¹⁰⁻¹⁹ Fox, Hamilton, Jimerson, L. Pleasant, L. Otter, U. Otter, Pleasant Lake, Silver. ¹⁰ Center, Golden, Hog, Hogback, Loon. Birge and Juday (1911, p. 136) have shown that extremely soft water lakes such as those of northeastern Wisconsin are relatively poor in plankton especially phytoplankton. The above mentioned authors divide the lakes of Wisconsin into three classes with reference to carbonates, namely, soft, medium, and hard. The soft water lakes contain carbondioxide as carbonate in amounts less than 5 cc. per liter, the medium 5 cc. to 22 cc. per liter, and the hard water lakes above 22 cc. per liter. On this basis, all lakes considered in this paper are hard water lakes varying in carbonates from 24.96 cc. per liter to 54.73. Theoretically the amount of phytoplankton should be roughly proportional to the amount of carbonates. Plant growth is also dependent upon other factors. The form of the basin is a potent factor. The shallower lakes generally produce more phytoplankton than the deeper lakes. For example, Hogback Lake with a depth of 8.5 meters has more phytoplankton than any other lake of the series, while Clear Lake of Steuben County, with a depth of 32 meters, is relatively low in phytoplankton. Rice (1916) and others have shown that the amount and nature of nitrogen compounds are related to plant growth in water. Atkins (1924) has shown a similar relation for phosphorous. Allen (1914) finds some unknown organic compound necessary for the artificial culture of marine plankton. In spite of these and other factors known to influence plant growth, it appeared probable from the inspection of our data that the number of certain diatoms was correlated with the amount of carbonates. The average amount of carbonates in thirty-two lakes was determined
by taking the arithmetical average of the maximum and minimum. (The volume of most of the lakes is unknown, so that the amount of the carbonates could not be more closely determined.) The coefficient of correlation between this average of the carbonates and the number of three phytoplanktons Fragillaria, Melosira, and Clathrocystis was .4549, .4559, and .0284, respectively. It appears from this that in spite of other factors influencing plant growth, there is a significant correlation between the carbonates and diatoms, but not between carbonates and blue green algae. Correlations above .3 are usually regarded as significant. These diatom correlation factors are nearer .5 than .4. #### OXYGEN In discussing the distribution of oxygen, it is necessary to recall the thermal stratification during the summer of lakes in temperate latitudes. Due chiefly to thermal resistance to mixture, lakes become stratified during the warmer months into a warm upper layer, beneath which is a stratum whose temperature decreases rapidly as the depth increases, and below this is a region of relatively cold water. These are known respectively as the epilimnion thermocline (mesolimnion) and the hypolimnion. In these lakes the epilimnion is usually five or six meters thick. The thermocline extends from a depth of five or six meters to a depth of ten to twelve meters. The hypolimnion occupies the depth beyond ten or twelve meters. This stratification is usually established by the first of June and lasts until the middle of October in the shallower lakes, and about a month longer in the deeper lakes. In addition to the thermal stratification of lakes, the amount of oxygen is influenced in the upper levels by photosynthesis which in turn is determined by the amount of incident solar energy and the depth to which the various wave lengths penetrate. The amount of incident energy at the equinox when the sun is at meridian varies with cosine of the latitude. This amount varies diurnally toward zero at sunrise and sunset. The long days of summer at high latitudes tend to offset the influence of the lower angle of incidence. Birge and Juday (1921) using a thermocouple (bolometer) report that 5% of the sun's energy remains at 5 meters and about 1% at 10 meters. More refined results and very elaborate data are given in a later paper (Birge and Juday, 1929). In sea water Shelford and Gail (1922), using a photoelectric cell, found that about 10% of the light penetrating the surface remained at 10 meters. Klug (1925) using an instrument based on photographic emulsion found that 27% of the light which penetrated the surface remained at 5 meters and that 1.5% persisted at 10 meters. Shelford found 25% of the incident light reflected, Klug 33%. From the above results it is evident that in our lakes whose transparency approximates that of the Wisconsin lakes, the epilimnion is well lighted and the thermocline receives light sufficient for photosynthesis especially in the upper half. In practically all our lakes the hypolimnion lies below 10 meters. From the results of Birge and Juday 1. c. the hypolimnion never receives as much as one per cent of the incident solar energy. The Hypolimnion The hypolimnion is completely sealed from the air during the period of summer stagnation. It is cold and dark. This means that all the oxygen it has is that taken down with the water during the vernal circulation. This amount is gradually reduced. This reduction is due in part to the respiration of the organisms present, but usually the most important factor in its reduction is the decay of organic matter. There is always organic matter on the bottom of the lake. Its decay reduces the oxygen in a thin stratum of water in contact with it. However, the organisms that live at and near the surface (in the epilimnion) die in large numbers and their remains slowly sink. As they pass through the lower strata of water, they slowly reduce the amount of oxygen. It is obvious that the rate of oxygen reduction depends on two factors, the amount of this organic matter present and the temperature of the water. The temperature of the water depends on the date of stratification. Some lakes stratify earlier than others and the same lake may stratify at different dates in different years. Of the thirty-two lakes (excluding James and Snow), twelve had no oxygen at the bottom on the date examined. Seventeen others had less than 1 cc. per liter. Of the three that had an excess of 1 cc. per liter, two (Clear of Steuben and Crooked of Whitley County), are the deepest of the series, 32 and 30 meters respectively. Crooked of Whitley is cold on the bottom; its temperature, 6.1° C., is equaled only by Cedar of Whitley. Clear is moderately cold, 10.7° C, but is usually rather free from organic matter. Its littoral is especially free from plants. These two factors account for the persistence to mid-summer of considerable oxygen at the bottom. Loon Lake on the other hand is the shallowest lake in the series. Its depth is only four meters. On the day the collection was made its surface temperature was 26.7 while the bottom was 21.4. The temperatures clearly indicate that the lake is mixed to the bottom by the wind during the summer. A period of calm weather would rapidly reduce the oxygen in the lower layers because of the high temperature. | | Lake | Date | s | 2 | 4 | 6 | 8 | |------------|---------------------|--------------|------------|------------|--------------|------------|------------| | I. | James N | 6-19 | 104 | 104 | 105 | 103 | | | 2.
3. | James J | 6-20
6-21 | 108
105 | 104
104 | 106
107 | 102
101 | | | 1.
5. | James B | 6-21
6-22 | 103 | 104 | 103
100.7 | | | | 6.
7. | SnowJames A | 6-22
6-24 | 113 | 111 | 100.4
121 | 108 | | | 8.
9. | James J | 6-24
6-25 | 112
109 | 110
107 | 116
113 | 108
103 | | | [0.
[1. | James F | 6-25
6-26 | 106 | 107
108 | 113
116 | 102
110 | | | 12.
13. | James H | 6-27
6-28 | 106 | 104
108 | 109 | 106 | | | 14.
15. | James C | 7-1
7-2 | 115
116 | 118
116 | 115
110 | 107
116 | | | 16. | James U | 7-2
7-4 | | | 114
101 | 104 | | | 22. | GageFox. | 7-6
7-10 | 106 | 106 | 102 | 123 | 158 | | 26.
27. | HamiltonCenter. | 7-11
7-14 | 122 | 122
101 | 105 | | | | S.
9. | Clear.
U. Otter. | 7-15
7-17 | 107
108 | 107 | 110 | 107 | 139 | | 0.
12. | L. Otter
Hog. | 7-18
7-23 | 106
106 | 106
102 | | | | | 14.
15. | Silver | 7-24
7-24 | 103 | | 100 | | | | 39.
10. | Crooked
Hamilton | 7-30
7-31 | 103
106 | 103
115 | 103
103 | | | | 1. | MarshGeorge | 8-1
8-2 | 115
108 | 112
111 | 105 | | | | 1.
5. | GageClear | 8-3
8-5 | | | | | 153
134 | | 0. | James G | 8-8
8-9 | 100
102 | 102
101 | 104 | | | $^{{\}it TABLE~No.~3.}$ Oxygen supersaturations for the year 1929. All except those at 8 meters are in the epilimnion. #### The Thermocline (mesolimnion) The thermocline like the lower levels of the lake (hypolimnion) is sealed from the atmosphere during the period of stagnation but unlike the hypolimnion its temperature varies from that of the epilimnion above to that of the hypolimnion below. It often receives an appreciable amount of light. Its temperature facilitates both more rapid decay of organic material and more rapid metabolism in the living organism than occurs in the cooler waters beneath it. The result is that when few chlorophyl bearing organisms are present the oxygen is often reduced more in the thermocline than it is in the upper part of the hypolimnion. This produces what might be called the thermoclinal oxygen notch. It regularly develops in Tippecanoe Lake. In these studies I have found it in station N of James Lake, and in Station O in Snow Lake. Birge and Juday (1911) report it for lakes North, Green, and Knights. Litynske (1926) found it in Lake Wigvy. Lake Plön and "Schöhsee" according to Thienemann (1928) develop this condition. This deficiency of oxygen in the thermocline is always subsequent to the establishment of the summer stratification. It usually develops in August and lasts into September. The earliest recorded date I have been able to find is July 12 in Plön, Thienemann (l. c., p. 168). However, in this instance the amount at 15 meters is only .56 cc. per liter less than the amount at 20 meters. The biological significance of this will be discussed in its relation to the cisco (Argyrosomus artedi cisco Jordan). Occasionally a rather dense flora of diatom or algae develops in the thermocline. When this occurs the water may become highly super-saturated. A super-saturation in the thermocline is much more permanent than one developed in the epilimnion because the water of the thermocline is not exposed to the air. For instance, a super-saturation was found in Otter Lake in 1909 at 4 meters on July 2. This was still present on July 17 and August 13 (Birge and Juday, 1911, Figures 59, 60, 61). In these lakes Gage had a super-saturation of 158% at 8 M. on July 6. On this date the 5 to 10 meter level had 74,135 Lyngbya per liter. On August 3 the saturation at 8 meters was 153% although the amount of phytoplankton had declined. In Clear Lake the saturation on July 15 was 139% and on August 5 it was 134%. The super-saturation that develops in the thermocline may persist more than a month and for a considerable period after the decline of the plankton flora that produced it as the data in Gage indicated. In general the oxygen in the thermocline may reach a minimum as low as that of the hypolimnion or it may have a maximum exceeding that of the epilimnion. In either case the condition is very persistent usually lasting until the sinking of the thermocline restores the circulation of the water with that of the epilimnion. | | June | July | August | |--|-------|-------|--------| | 1929: Hours Mean percent Normal percent
| 354.3 | 368.3 | 299.9 | | | 78. | 80. | 70. | | | 67. | 70. | 66. | | 1930: Hours. Mean percent. Normal percent. | 332.9 | 351.7 | 215.1 | | | 74. | 77. | 50. | | | 67. | 71. | 66. | | Excess Hours 1929 over 1930. | 21.4 | 16.6 | 84.8 | TABLE No. 4. Sunshine records from the mu aly meterological summary, Ft. Wayne station, Epilimnion Oxygen in the epilimnion may change rapidly but rarely does the amount become excessively high or low. This region is influenced by the vicissitudes of the weather as well as the diurnal changes. When considerable phytoplankton is present a calm clear day will result in a super-saturation of oxygen. But a high wind will reduce this to about the saturation point. Theoretically there should be a diurnal oxygen pulse in the epilimnion on clear days. This is, however, rarely detectable. Birge and Juday (1911, p. 43) found it in Mendota on September 21, 1908. It was demonstrated (Scott, 1923) on Winona Lake August 9, 1922. On Winona Lake it has been impossible to demonstrate this pulse except in very calm and clear weather. However, even with slight breezes a super-saturation may be built up if there are successive days of sunshine. In 1929 there were 51 series of 0 determination. In these 51 series there were 32 super-saturations in the epilimnion or 62% of the series. In 1930 there were 7 super-saturations in 24 series or 29% of the total. An increase of the oxygen above the saturation point in the epilimnion can only be accomplished by photosynthesis. This in turn depends on the number of phytoplanktonts and the number of hours of sunshine. The number of phytoplanktonts varied from lake to lake, but there was no appreciable difference between the two years. The sunshine records were obtained from Fort Wayne. The U.S. Weather Bureau Station at Fort Wayne is the nearest station to this group of lakes. The lakes average about 40 miles from Fort Wayne. They are arranged roughly in an arc from north to north of west. These data appear in Table No. 3. There was more sunlight in each of the summer months in 1929 than there was in 1930. In 1929 this excess amounted to 21.4 hours, 16.6 hours, and 84.8 hours in June, July, and August. In 1930 most of our work was done in August, the month of the greatest excess. The normal percent of sunshine for August is 66. The mean for August, 1930, was 50 while the mean for August, 1929, was 70. That is, there was approximately 40% more hours of sunlight at Fort Wayne in August, 1929, than there was in 1930. There is evidence that records obtained at a station in the middle of a city differ from those taken in the open country. There is no evidence that this relation would vary from year to year. The above data indicate something of the amplitude of seasonal variation in the epilimnion. How much this seasonal variation in photosynthesis and the consequent production of carbohydrates would affect the other life in the lake is unknown. It has been shown (Hjort, 1914 and others) that some marine fishes grow more rapidly one year than another. So far as I know this has not been clearly demonstrated for fresh water fish. ## THE PLANKTON The plankton is one of the most important elements in the economy of a lake and one of the most difficult to evaluate. It has been measured volumetrically, numerically, and gravimetrically. The volumetric and gravimetric methods are relatively rapid, but neither permits analysis of the components of the plankton. Plankton is studied as a mass and not as an association of organisms. The volumetric method also has evell known difficulty arising from the fact that different planktonts settle. By enumerating the different organisms it is possible to compare their relative abundance in different lakes and to determine their seasonal variations. The difficulty of this method is that neither the weight nor volume of any individual organism of the plankton is accurately known so that the weight or volume of plankton per unit cannot be calculated. Another difficulty in evaluating plankton is that a few of the forms are probably end products, while many of them are not. The crustacea, especially the cladocera, eat the smaller phytoplankton and in turn are eaten by the fish. The number or amount present at a given time are those that have not been eaten or destroyed in some other way. The value of any organism is not a function of the number present at a given moment, but is a function of the reproductive capacity of this population. | Lake | Number Daphnids
sq. M. Max. Depth | Food Available
for Number gms.
of Fish sq. M. | Pounds of Fish
Per Acre
Possible | |--|--------------------------------------|---|--| | Golden
Hogback
Long,
George
Clear. | 246,000
52,000 | 1,442
2,009
2,365
500
346 | 12,872
17,811
21,049
4,452
3,076 | TABLE No. 5. The number of units of fish that the summer daphnid population will support. The first three lakes are especially rich in daphnids and are probably out of balance. The last two are poorer in daphnids and are probably more nearly balanced. Banta (1921) reared Daphnia in an unbroken line from April, 1912, until September, 1916, nearly four and one-half years. He determined a reproductive factor by dividing the number of young in a brood by the time between broods. In the "minus" line, the reproductive factor was .99 and in his plus line it was 1.08. This means that on the average each parthenogenic adult produced approximately one young per day. If a population remains constant, an amount equally this population will be produced and eaten daily. While it is not possible to convert any number of Daphnia into gravimetric or volumetric units, it is possible to convert these numbers into fish food requirements by experimental methods. This work was begun by Miss Blanche E. Penrod. By direct observation in an aquarium, she was able to determine the number of daphnids eaten by a blue gill in a given period of time; these periods varied from 15 minutes to one hour. The counts were recorded by a "tallying machine." The work is to be continued, but the results already obtained help in the interpretation of the plankton counts. In 39 series, blue gills, each weighing 16 grams, ate on an average 139 daphnids per hour. We do not know just how many hours per day a blue gill feeds. If we assume that it feeds for 12 hours a blue gill weighing 16 grams would consume 1668 daphnids, or 104 daphnids per gram of fish. If this amount is divided into the number of daphnids present in a given column of water (which equals its productive capacity), the quotient represents the number of grams of fish that the daphnids present on that date would support. In Table 4, this has been computed. Golden, Long, and Hogback Lakes are shallow, rich lakes. George and Clear are relatively deep lakes, not subject to such rapid changes in temperatures and biota as occur in the shallower lakes. The seasonal changes in daphnid populations are extreme. Especially is this true in shallow, rich lakes. The maxima occur during the spring, summer, or fall, when the fish feed most. The evidence from hatchery plants and from scale studies indicates that fish in inland waters feed little during the colder parts of the year. However, it is hardly likely that a lake would support a fish population indicated by the maximum daphnid population. The average for the warmer months would be a better basis for estimation. It is also true that blue gills at times feed almost wholly on other organisms. In Wawasee Lake, Hile found them feeding at times almost wholly on chironomid larvae. When the seasonal variations in feeding are worked out, it may be that during daphnid minima, other foods make up the deficit. These questions must await further data. Another bit of evidence that assists in this evaluation is some data on the contents of fish stomachs. During the studies of Dr. Hile on the fish scales, Mr. E. G. Thomas determined the contents of the stomachs of 412 fish of which 292 were blue gills. Of these blue gills, 138 had eaten daphnids. The work had to be done rapidly. The contents were fractionated and an aliquot part of the daphnids counted. Absolute accuracy was not attained but the results are a fair approximation. Some of the fish contained more daphnids than others. The average number per gram of fish for the 138 fish was 5.5. The maximum for a single fish was 26 daphnids per gram. This indicates that the estimate that daphnids may feed 12 hours per day is too high and consequently the estimate of the number of pounds of fish a lake will support is too low. The food of the daphnids consists of the smaller forms in the plankton, the so-called nannoplankton. The amount of this that a daphnid requires is a rather difficult problem. The volume of the alimentary canal of Bosmina, Daphnia pulex and Daphnia retrocurva has been determined by making a model to scale and measuring this volume by water displacement. The volumes are .00109 cc., .00287 cc., and .00336 cc., respectively. Some data have been collected on the rate at which food passes through the alimentary tract of these forms. Although 144 readings have been made, some of the results are rather erratic. Consequently, they are withheld until the factors causing the variations are determined. It is hoped that this work will add one more link in the "food chains" in our lakes. ## JAMES LAKE—ITS PECULIARITIES James Lake has the most complex basin of any lake whose map or description I have been able to secure. It has three major basins designated first, second, and third, beginning at the south. Snow Lake, lying to the north of the third basin, is really a fourth basin of Lake James, although the channel connecting the third basin and Snow Lake is longer, narrower, and shallower than the channels connecting the
other basins. These four basins lie in a great crescent with the convex side to the west (see map). The first and second basins are connected by a channel 800 feet (242 M.) wide and 27 feet (8.2 M.) deep. The channel connecting the second and third basin is 500 feet (152 M.) wide and 30 feet (9.1 M.) deep. These four primary basins have twenty-one secondary basins or deeps distributed as follows. The first basin has eight, the second five, the third three, the fourth (Snow) five. These secondary basins differ from each other physically, chemically, and biologically. In Table 6 I have selected five pairs that have the same depth. The bottom temperatures of the basins having the same depth differ from 5 degrees C. in basins N and O to 2.8 degrees in basins E and K. This indicates that the basins stratify on different dates. Those with the colder water at the same depth stratify first. Two factors influence the rate at which oxygen is depleted from the bottom. The higher the temperature and the more organic matter present, the more rapidly the oxygen is reduced. In the pairs CU, BJ, and NO, the temperature is the more potent factor. In the basins GP and EK, the oxygen is lowest at the bottom in the basin of each pair that has the lowest temperature indicating that more organic matter or more easily oxidized material is present in the basin with the minimum temperature. | Date | Station | D | Т | О | CO ₂ | Cb | |------|----------------|--|--|---|---|--| | 6-24 | GPEKCUB
JNO | 15
15
17
17
18
18
20
20
25
25 | 13.1
10.6
12.8
10.
11.7
10.0
11.7
9.2
6.7
7.2 | 3.1
0
2.7
1.3
1.5
4.1
2.0
2.6
2.3 | 3.8
7.50
2.84
7.52
4.90
4.12
1.38
1.64
3.52
7.70 | 35.78
38.42
38.28
31.82
39.30
38.78
39.18
38.42
38.92
42.42 | TABLE 6. Comparison of Stations of the same depth in James Lake. #### PLANKTON | Species | Sta. | 0-5 | 5-10 | 10-15 | 15-20 | |---------------|--------|-----------------|--------------|----------------|----------------| | Ceratium | N
B | 2,448
1,105 | 332
298 | 284
76 | 93 | | Dinobryum | N
B | 19,051
3,357 | 288
439 | 136
149 | 21
51 | | Daphnia | N
B | 4.5
8. | 8.8 | 8.8 | 12.8 | | Holopedium | N
B | 113
0 | | | | | Diaptomus | N
B | 12
8.8 | 84
4.8 | 0
14.4 | 10.4 | | Cyclops | N
B | 13
21.6 | 64 3.2 | 7.2 | 5
5.6 | | Nauplii | N
B | 19
42 | 64
29 | 4 | 29.6 | | Melosira | N
B | 7,597
422 | 51 | 231
119 | 217
294 | | Fragillaria | N
B | 9,525
849 | 5,040
772 | 1,752
1,186 | 1,203
2,709 | | Clathrocyctis | N
B | 11,680
1,809 | 204
430 | 221 | 264 | #### DISSOLVED GASES | D | | т | 0 | % | co | Сь | |----|--------|--------------|------------|------------|------|----------------| | S | N
B | 24.4
24.2 | 6.1
6.0 | 104
103 | 25 | 19.98
18.70 | | 20 | N
B | 7.3 | 4.8 | | 1.76 | 19.46
19.59 | N-Depth 25 M.-date 6-19-29 B-Depth 20 M.-date 6-21-29 TABLE No. 7. Comparison of Stations N and B James Lake. #### LAKE: JAMES, STATIONS E AND U Date: 7-2-1929—Aug. 1-18 M. | Species | E | U | |---------------|-------|-------| | Ceratium | 1,194 | 610 | | Dinobryum | 8 | 74 | | Aneura | 52 | 35 | | Polyarthra | 13 | 11 | | Notholea | 20 | 9 | | Daphnia | 1.7 | 3.7 | | Diaptomus | 18 | 14 | | Cyclops | 19 | 13 | | Nauplii | 19 | 13 | | Melosira | 210 | 158 | | Fragillaria | 4,222 | 3,011 | | Asterionella | 722 | 389 | | Anabena | 4 | | | Clathrocyctis | 56 | 37 | | Lyngbya | 194 | 483 | | DISSOLVED GASES | | | | | | | | | | | |-----------------|---|-----------------|--|--|--|--|--|--|--|--| | Temp | erature | Oxygen | | | | | | | | | | E U | | Е | U | | | | | | | | | 22.2 | 22.1 | 7.1 | | | | | | | | | | 22.2 | 21.7 | 7.0 | | | | | | | | | | 22.2 | 21.1 | 7.1 | 7.1 | | | | | | | | | 18.9 | 16.4 | 7.0 | 7.07 | | | | | | | | | 14.7 | 13.9 | 6.8 | 6.7 | | | | | | | | | 13.7 | 12.8 | 5.7 | 6.2 | | | | | | | | | 13.3 | 11.1 | 4.3 | 5.5 | 13.1 | 10.2 | 3.7 | 4.3 | | | | | | | | | 12.8 | 10. | 2.7 | 4.1 | | | | | | | | | | Temp E 22.2 22.2 22.2 18.9 14.7 13.3 13.1 | Temperature E | Temperature Oxy E U E 22.2 22.1 7.1 22.2.2 21.7 7.0 22.2.1 7.1 18.9 16.4 7.0 14.7 13.9 6.8 13.7 13.3 11.1 4.3 13.1 10.2 3.7 | | | | | | | | TABLE 8. Comparison of collections taken at stations of the same depth on the same date. Not only do these basins differ in temperature and the distribution of gases, but the planton is different. In Table 7 Stations N and B are compared. From the bottom temperatures, it is evident that Station N stratified later than Station B. Correlaed with this is a much richer plankton in the former than in the latter. At Station N, Ceratium, Dinobryum, Melosira, Fragillaria, and Clathrocystus are strikingly more numerous than at Station B. There are 113 Holopedium per liter at N, while it is entirely absent from Station B. There are two days difference in the dates of the collections at these two stations. The collections at Stations E and U were made on August 18. The differences here are quite apparent. Ceratium, the rotifers, and all the phytoplankton were more numerous at ${\bf E}$ than U, while the reverse was true of Dinobryum and Daphnia. In this case, as in Stations B and N, the station that had stratified later as indicated by the higher bottom temperature had developed the more plankton. The epilimnion beyond the littoral is usually regarded as a rather homogeneous association. It appears from these data that it is homogeneous only because the thermocline and hypolimnion beneath it are homogeneous. Where these lower depths are separated by barriers they develop different characteristics. They differ in temperature, in oxygen, in carbonates, and probably in organic matter. It seems apparent that the lower levels of a lake have a much more intimate relation and direct influence on the epilimnion during the summer stratification than has heretofore been suspected. I first noted differences in temperature and dissolved gases in the different secondary basin of Webster Lake (Scott, 1916, p. 17). Welch (1927) has noted marked differences in the physical and chemical characteristics of the seven secondary basins of Douglas Lake. The next problem is the analysis of the biological peculiarities of each basin and their relation to the physical and chemical characteristics of the basin. What influence one basin may have on another is entirely unknown. # RELATION OF DISSOLVED OXYGEN AND CISCO Early in September, usually between the first and tenth, the "cisco" (Argyrosomus artedi cisco Jordan) come to the surface of Snow Lake, struggle as if in discomfort, and then disappear. They have been described by local observers as "gasping for breath." When they begin to appear a maximum is soon reached, after which the number at the surface is rapidly reduced. The maximum rarely lasts more than a day and the whole phenomenon is over in less than a week. This has been observed on Snow Lake for at least thirty years. It occurs occasionally on the third basin of James Lake. They have been examined repeatedly for parasites without success. I suspected that the disappearance of the oxygen from the hypolimnion might be the cause. In the fall of 1928 cisco were taken from Indian Village Lake, a small lake about four miles southeast of Lake Wawasee (Turkey Lake). A preliminary set of soundings indicated that its maximum depth was near six meters. It was possible that cisco taken in Indian Village Lake in November during the breeding "run" might have come from lakes farther up the chain. There are six lakes in the so-called Indian Village chain. In 1929 a map was made of Indian Village Lake and the oxygen, carbonates, and temperature determined. The maximum depth was 6.4 meters. Only a trace of oxygen was found below 4 meters. Dr. Ralph Hile then set a 12 foot gill net in the deeper part of the lake, and took fish in the upper 2 feet only of the net. The fish never appear at the surface except at the breeding "run" in November. Tippecanoe Lake develops an oxygen "notch" in the thermocline, but the oxygen in the hypolimnion is rarely, if ever, reduced to a level dangerous to the "cisco." The evidence from Indian Village Lake indicates that the mere disappearance of the oxygen from the hypolimnion causes no discomfort if the oxygen curve maintains a simple sigmoid form. The development of a thermoclinal notch in the oxygen curve is not in itself dangerous. However, if there is a thermoclinal notch developed in the oxygen curve and subsequently the oxygen is exhaused from the lower hypolimnion, the fish will be forced upward by the latter process until they reach the lower part of the thermocline. From this level they move into a region of less oxygen by going either up or down. They are trapped and remain at this level until they approach asphyxia. When they lose control of their hydrostatic apparatus, they float toward the surface. When this occurs in Snow Lake, they have 3 meters above them with little or no oxygen. This increases their discomfort. Although there is much oxygen in the upper 7 meters the fish float to the surface before they make
a complete recovery. In Figure 3, the curve for Tippecanoe Lake has an oxygen notch with plenty of oxygen remaining in the hypolimnion. The curve for Indian Village Lake is a simple sigmoid curve. The curve for Snow Lake dated 9-7-30 shows the notch developed. In the curve for 9-14-29, the water is near oxygen saturation for the first 7 meters. At 8 meters there is approximately one-half as much as at 7. At 9, 10, and 11 meters there is no oxygen but at 12 meters it appears again. This is the point just below the thermoclinal notch. So far high winds have prevented quantitative collections to demonstrate the accumulation of fish just below the thermoclinal notch. After they disappear from the surface they remain in the epilimnion. This has been demonstrated by netting. The other facts connected with this suggestion are well established. For many years the fish have been gathered with dipnets in Snow Lake during the time when they come to the surface. With hand propelled craft they seem to have held their own. However, the increased us of the outboard motor has resulted in nearly every fish that reaches the surface during daylight hours being captured. The catch in 1929 and in 1930 is reported to be much below the normal. The present regulation should probably be modified in order that sufficient stock be preserved for breeding. FIG. 3. Oxygen curves for Tippecanoe, Indian Village, and Snow Lakes. # LITERATURE CITED ATKINS, W. R. G. The phosphate content of fresh and salt waters in its relation to the growth of the algal plankton. Jour. of Marine Biol. Assoc. 13:119-150. BANTA, A. M. Selection in cladocera on basis of a physiological character. Carnegie Inst. of Wash. Pub. 305:1-170. BIRGE, E. A., AND C. JUDAY. 1911. Inland lakes of Wisconsin. The dissolved gases of the water and their biological significance. Wis. Geol. and Nat. Hist. Surv. Bul. 22:1-259. 1921. Further limnological observations on the Finger Lakes of New York. Bul. Bur. Fish. 37:211-252. The transmission of solar radiation by the waters of inland lakes. Trans. Wis. Acad. Sci. Arts and Letters 24:510-580. DOMGALLA, B. P., FRED, E. B. AND PETERSON, W. H. Seasonal variation in ammonia and nitrate content of lake waters. Jour. Am. Water Works Assoc. 15, No. 4. DRYER, CHAS. R. 1891. Report on the geology of Steuben County. Ind. Dept. Geol. Nat. Res., 17th Ann. Rept., pp. 114-159. HJORT, JOHAN. Fluctuations of the great herring fisheries of northern Europe. Cons. Int. Perm. Exp. Mer. Rap. et Proc., Verb., 20. LEVERETTE, FRANK, AND TAYLOR, FRANK B. The Pleistocene of Indiana and Michigan and the history of the Great Lakes. Monog. U. S. Geol. Surv., 53, pp. 1-529. LITYNSKI, A. 1026. Limnological studies Lake Wigry I. Arch. d. Hydrobiol. et Ichthyol. RICE, THURMAN B. 1916. A study of the relation between plant growth and combined nitrogen in Winona Lake. Proc. Ind. Acad. Sci. 1916:333-362. SCOTT, WILL. 1915. Report on the lakes of the Tippecanoe Basin. Ind. Univ. Stud. SHELFORD, V. E., AND GAIL, F. W. A study of light penetration into sea water made with a Kunz photo-electric cell with particular reference to the distribution of plants. Pub. Puget Sound Biol. Sta. 1922:141-176. THINEMANN, A. 1928. Der Sauerstoff im eutrophen und oligotrophen See. Die Binnengewasser, B. IV, pp. 1-175. Stuttgart. TUCKER, W. M. 1922. Hydrology of Indiana. Handbook of Indiana Geology, pp. 261-402. WELCH, PAUL S. 1927. Limnological investigations on northern Michigan lakes. Mich. Acad. Arts, Science, and Letters, 8:421-451. # EXPLANATION OF TABLES The figures 0.5, 5-10, 10-15, and 15-20 are depth in meters. D—Depth. T—Temperature. O—Oxygen. %—Percent of saturation. CO2—Carbon-dioxide. Cb—Carbonates. # TABLE 9. LAKE: ADAMS (LaGrange) Date: 9/6/30 ### Plankton | | Pl | ankton | | | | | | Di | ssolved | Gases | | | |--------------------------------------|-------|--------|------|---------|-----|-----|------|------|---------|-----------------|--------------|-----| | Species | 0-5 | 5-10 | 10-1 | 5 15-20 |) | D | т | 0 | % | CO ₂ | СР | рН | | Ceratium | 519 | 110 | 17 | 4 | | s | 22.7 | 6.52 | 100 | -1.4 | 25.4 | 8.3 | | Dinobryum | | 4 | | | | 2 | 22.4 | 5.48 | | -1.6 | 25.4 | 8.3 | | Aneura | 59 | 21 | 4 | 8 | | 4 | 22.3 | 5.27 | ŀ | -2.2 | 1 | - | | Polyarthra
Asplanena
Noltholea | 12 | 4 | | 4 | | 6 | 21.1 | 4.41 | | -1.0 | 26.2
26.0 | l | | l . | | | .8 | 4 | | 8 | 13. | .12 | | 1.4 | 33.0 | | | Daphnia | 4.8 | .8 | 3.2 | | | 10 | 10.3 | .17 | | 1.6 | 33.2 | | | | 1 | 1 | | | П | 12 | 9.7 | .07 | | 1.6 | 32.0 | | | Diaptomus | 13.6 | 3.2 | 1.6 | 1 | | 15 | 8.9 | .06 | | 1.4 | 32.4 | | | Cyclops | 20.8 | 10.4 | 2.4 | 1.6 | 1 | 1 | | | į | | | | | Nauplii | 12.8 | 10.4 | 1 | | | 20 | 8.8 | 0 | ı | 2 | | | | Corethra | 1 | .8 | | i | | | 0.0 | ١ | | 2 | 32.8 | | | Melosira | 115 | 46 | 17 | 4 | | - 1 | | - 1 | ļ | | j | | | Fragillaria | 554 | 64 | 81 | 21 | | 25 | 8.8 | 0 | İ | 3.2 | 33.0 | | | Asterionella | | | | | | | | | - 1 | - 1 | - 1 | | | Anabena | 353 | 76 | 4 | 4 | | ł | - 1 | | - 1 | ł | | 1 | | Clathrocyctis | 2,197 | 806 | 174 | 307 | - 1 | - 1 | | | | į | | | | Oscillatoria | 1,216 | 401 | 123 | 128 | - [| | | 1 | | | | | | Lyngbya | 12 | | | | | | - 1 | | | 1 | | | | | | ! | | | | | | | | | | | # TABLE 10. # LAKE: BIG CEDAR (LaGrange) Date: 9/2/30 Plankton | | I lenk | | | | | | | | | | | | |---------------|--------|-------|-------|-------|---|---|------|------|-----|-----------------|----------|-----| | Species | 0-5 | 5-8 | 10-15 | 15-20 | | D | т | 0 | % | CO ₂ | Сь | pН | | Ceratium | 1,055 | 307 | | | | s | 24.4 | 5.33 | | -1.4 | 31.6 | 8.3 | | Dinobryum | 465 | 128 | | ļ | | 2 | 24.4 | 5.88 | 101 | -2.4 | 31.8 | 8.2 | | Aneura | 64 | 64- | | | | 4 | 23.8 | 5.93 | 191 | -2.0 | 32.4 | 8.1 | | Polyarthra | 17 | | | | | 6 | 22.0 | 2.75 | | 0 | 33.4 | 7.6 | | Noltholea | 4.2 | | | ļ | | 8 | 21.1 | .12 | | 0 | 34.8 | 7.5 | | Daphnia | 1.6 | 10 | | | | | | | | | | | | Ostracoda | | 8.8 | | | | | | - | | | | | | Diaptomus | 20 | 12 | | | | | | | | | | | | Cyclops | 28 | 6.4 | | ļ | | | | | | | | | | Nauplii | 30 | 11.2 | | | 1 | | | | | | | | | Melosira | 8 | 4 | | | | ĺ | | | | | | | | Fragillaria | 3,878 | 2,235 | | | | 1 | ļ | | ľ | | | | | Asterionella | 4 | | 1 | | | | | | | | | | | Anabena | 46 | | | | | ļ | | | | | | | | Clathrocyctis | 2,073 | 1,024 | | | ĺ | | | | | 1 | | | | Oscillatoria | 21 | 21 | 1 | | | | | | 1 | | | | | Lyngbya | | | | L | | | j | | | | <u> </u> | | TABLE 11. LAKE: BIG CEDAR (Whitley) Date: 8/12/30 | - | Plankt | on | | | | | Di | ssolved | Gases | | | |-----------------------------------|------------|------|------|-------|-----|------|------|---------|-------|------|------| | Species | 0-5 | 5-10 | 10-1 | 15-20 | | D | Т | 0 | % | CO2 | Сь | | Ceratium | -1- | 8.5 | | 12.8 | | s | 26.1 | 5.38 | | -1.4 | 28.8 | | Dinobryum | - | 4.2 | - | | 1 | 2 | 25 | 5.35 | | -1.4 | 29.2 | | Aneura
Noltholca
Polyarthra | 1 | 12.8 | 4.2 | | 1 | 4 | 24.4 | 5.69 | | -1.0 | 28.2 | | Asplanena
Hexarthra | 8.5
4.2 | 4.2 | | | 1 | 6 | 17.7 | 6.71 | l | -1.4 | 29.2 | | Daphnia | 1 | 1 | 8.5 | 12.8 | | 8 | 13.3 | 7.10 | | -1.4 | 31.8 | | Dapnina | 2.4 | 10.4 | 15 | 28.8 | l | 10 | 10.3 | 5.97 | | -1.0 | 31.8 | | | | " | | | 1 | 12 | 8.8 | 4.57 | | .4 | 32.0 | | D: . | i | | ł | | ł | 14 | 7.2 | 2.90 | | 2.0 | 31.6 | | Diaptomus | 5.6 | 16 | .8 | | | | | j | | | | | Cyclops | 3.2 | 14.4 | 14.4 | 11.2 | | | | ' I | | 1 1 | - 1 | | Nauplii | 17 | 46.9 | 76 | 81 | i i | | | | | ļ j | 1 | | Corethra | | 21 | 4.2 | | | 21.5 | 6.1 | 40 | | 2,0 | 31.6 | | Melosira | | 4.2 | | | | | 1 | 1 | | | | | Fragillaria | 25 | 25 | 64 | 110 | | | ł | İ | | | | | Asterionella | | 12.8 | 59 | 42 | 1 | 1 | 1 | j | | | - 1 | | Anabena | 68 | 136 | 29 | 29 | - 1 | | | Ì | | - 1 | ł | | Clathrocyctis | - 21 | 298 | 89 | 153 | i | | - 1 | | | | | | Oscillatoria | l | 8.5 | 4 | | | - 1 | - 1 | | j | - | | | Lyngbya | 12.7 | 119 | 21 | 12 | | | | | | | | # TABLE 12. LAKE: CENTER Date: 7/14/29 Plankton | Species | 0-5 | 5-10 | 10-15 | 15-20 | D | т | 0 | % | CO ₂ | Сь | |---|----------|------|-------|-------|--------|--------------|----------|-----|-----------------|--------------| | Ceratium | 29 | | | | s | 25 | 5.48 | | 74 | 30.1 | | Dinobryum | | | | | 2 | 25 | 5.85 | 101 | 74 | 29.9 | | Aneura | 145 | | | | 4
5 | 24.7
24.4 | .55
0 | | 4.20
5.78 | 31.1
32.1 | | Polyarthra
Asplanena
Hexarthra | 42
12 | | | | | | | | | | | Daphnia
Bosmina
Ostracod | 72 .8 | | | | | | | | | | | Diaptomus | | | | | 1 | | | | | | | Cyclops | 96 | | | | | | | | | | | Nauplii | 72 | | | | | | | | | | | Corethra | .8 | | | | | | | ĺ | | | | Melosira | 768 | | | | | | | | | | | Fragillaria
Tabellaria
Asterionella | 68
12 | | | | | | | | | | | Anabena | 51 | | | | | | | | İ | | | Clathrocyctis | 1,211 | | | | | | | | | ١. | | Oscillatoria | 665 | | | | | | | | İ | | | Lyngbya | 1,715 | | | | | | | | | | TABLE 13. LAKE: CENTER Date: 8/3/29 Plankton | 0 | | | | | , | | Dis | solved | Gases | | | |-----------------------------------|------------|------|-------|-------|-----|----------------------------|------------------------------|-------------------|-------|-----------------|----------------------------------| | Species | 0-5 | 5-10 | 10-15 | 15-20 | | D | т | 0 | % | CO ₂ | Сь | | Ceratium | 196 | | | | | | | | | | CB | | Dinobryum | 435 | | | | | 1 | 23.3
23.3 | 3.85
3.79 | | 0 | 30.36 | | Aneura
Hexarthra
Polyarthra | 64
106 | | | | | S
1
2
3
4
5 | 23.3
22.8
20.3
18.9 | 3.74
4.05
0 | | 0 | 31.36
30.12
30.36
31.62 | | Noltholca
Asplanena | 119 | | | - 1 | | | 10.9 | 0 | | 6.96 | 31.62
33.96 | | Daphnia | 2.4 | | | | - 1 | | 1 | 1 | - 1 | | | | Bosmina
Ostracod | 110
8.8 | | | | | | | | | | | | Diaptomus | 2.4 | - 1 | 1 | | | | | - 1 | | | | | Cyclops | 208 | | | | - [| | - 1 | - 1 | | 1 | | | Nauplii | 123 | | | | | | | | | | | |
Melosira | 580 | | | | | | l | | | | | | Fragillaria | 537 | | - 1 | | | | - 1 | | - 1 | | | | Asterionella | 17 | - 1 | - 1 | | } | - 1 | - 1 | | - 1 | - 1 | | | Anabena | 38 | | - 1 | - 1 | | | | | - 1 | | ı | | Clathrocyctis | 1,111 | | - } | ĺ | | | - 1 | | - | 1 | | | Oscillatoria | 533 | | | - 1 | | | | | | | 1 | | Lyngbya | | | | | | | | İ | | | | # TABLE 14. ### LAKE: CROOKED (Steuben) Date: 7/5/29 Plankton | Species | 0-5 | 5-10 | 10-15 | 15-20 | D | т | 0 | % | CO2 | Съ | |------------------------|-------------|------|------------|-------|----|------|-----|---|------|-------| | Ceratium | 780 | 243 | 21 | 25 | s | 22.2 | 5.5 | | 0 | 24.62 | | Dinobryum | 55 | 21 | 4 | | 2 | 22.2 | 5.5 | | 0 | 24.14 | | Aneura | 12.8 | 21 | | 8.5 | 4 | 21.7 | 5.6 | | 0 | 24.14 | | Polyarthra | | | | | 6 | 18.3 | 5.0 | | 0 | 24.88 | | Noltholea
Asplanena | 8.5
12.8 | 8 | 8.5
8.5 | | 8 | 15.6 | 2.0 | | 3.72 | 27.86 | | Hexarthra
Daphnia | 17
14 | 8 | 1.6 | 4 | 10 | 13.1 | 2.1 | | 3.72 | 27.86 | | Ostracod | 4.2 | | | | 12 | 11.5 | 2.9 | l | 3.98 | 28.36 | | | | | | | 15 | 10.4 | 2.1 | | 3.98 | 27.86 | | Diaptomus | 35 | .8 | .8 | | | | | | | | | Cyclops | 8 | 4.8 | .8 | 11 | | ļ. | | | | | | Nauplii | 29 | 17 | 4.2 | 4 | 20 | 10.6 | 1.4 | | 4.86 | 27.86 | | | 72 | 243 | 192 | 862 | 23 | 10.4 | .84 | | 5.22 | 28.10 | | Melosira | | | 1 | 1 | | ļ | | | | | | Fragillaria | 315 | 119 | 81 | 25 | | | | | } | | | Asterionella | 76 | 29 | 12 | 4 | | | 1 | | | | | Anabena | | | | | | | | | | | | Clathrocyctis | 524 | 311 | 55 | 162 | | | | | | - | | Oscillatoria | 8 | 72 | 21 | 29 | | | | | | | | Lyngbya | | | | | | | | | | | TABLE 15. LAKE: CROOKED (Whitley) Date: 7/30/29 Plankton Dissolved Gases Species 0-5 10-15 5-10 15-20 D т o % CO₂ Съ Ceratium 692 217 17 42 \mathbf{s} 26.7 Dinobryum 5.84 103 4 22.92 2 26.1 5.89 103 Aneura 0 22.44 4.2 Polyarthra Noltholca Asplancna Hexarthra Daphnia 4 23.9 6.11 103 23.42 34 6 21.1 4.44 2.44 23.18 5 8 8 4 8 16.7 3 .30 6.82 27.56 2.4 3.2 10 13.3 .61 5.02 28.54 12 11.7 1.33 4.88 26.84 Diaptomus 15 16 3 10.9 2.4 .87 6.34 27.56 Cyclops 1.6 7 2.4 3.8 Nauplii 4 8 4.2 4.2 $^{20}_{21}$ 10.6 10.6 0 Corethra 7.80 28.78 5.84 28.78 18 Melosira 34 64 140 128 Fragillaria 516 166 51 Asterionella 85 136 51 4 Anabena Clathrocyctis 866 507 264 183 Oscillatoria 162 42 29 34 Lyngbya # TABLE 16. LAKE: CROOKED (Whitley) Date: 8/15/30 #### Plankton | 0-5 | 5-10 | 10-30 | 15-30 | | D | T | 0 | % | CO2 | Cb | |------|--------------------------|--|--|--|--|---|--|--|---|---| | 55 | 42 | 4 | | | s | 26.1 | 5.56 | | -1.4 | 25.8 | | 8 | 1 | | | | 2 | 25 | 5.54 | | -1.0 | 25.8 | | | | 166 | | | 4 | 24.4 | 5.28 | | -1.0 | 25.8 | | 102 | i | 46 | | | 6 | 21.6 | 5.28 | | -1.6 | 25.8 | | | 12.8 | 17 | | | 8 | 13.5 | 5.15 | | -1.0 | 25.2 | | .8 | 2.4 | 1.6 | | | 10 | 10 | 8.40 | 108 | -1.4 | 29.0 | | 4 | 4 | .8 | | | 12 | 8.5 | 7.29 | | -1.0 | 29.2 | | | | | | | | | | | | 29.2 | | 21 | 16 | 9.6 | | | 15 | 7.5 | 4.76 | | U | 29.2 | | 22 | 12 | 29.6 | | | | | | ŀ | | | | 11.2 | 2 | 61 | | | 20 | 6.6 | 4.0 | | 1.0 | .27.2 | | ĺ | | | 1 | | | | | Ì | | | | | 4.2 | 1 | | | | | 0.00 | | | 29.6 | | 8.5 | 4.2 | | | | 25 | 6.1 | 3.23 | | 1.0 | 29.6 | | İ | | | | | | | İ | | İ | | | | | | 1 | | 30 | 6.1 | 1.63 | | 2.4 | 23.6 | | 785 | 1,147 | 354 | | | | | | | | | | 64 | 29 | 13 | 55 8 102 .8 4 21 22 11.2 | 55 42 8 102 12.8 .8 2.4 4 4 21 16 22 12 11.2 2 8.5 4.2 785 1,147 | 55 42 4 8 166 102 46 1.8 17 .8 2.4 1.6 4 4 .8 21 16 9.6 22 12 29.6 11.2 2 61 4.2 8.5 4.2 | 55 42 4 8 166 102 46 17 .8 2.4 1.6 4 4 .8 21 16 9.6 22 12 29.6 11.2 2 61 4.2 8.5 4.2 785 1,147 354 | 55 42 4 8 166 102 46 17 .8 17 .8 2.4 1.6 4 4 .8 21 16 9.6 22 12 29.6 11.2 2 61 4.2 8.5 4.2 785 1,147 354 | 55 42 4 8 8 8 166 4 102 46 6 12.8 17 8 .8 2.4 1.6 10 4 4 .8 12 21 16 9.6 22 12 29.6 11.2 2 61 20 4.2 8.5 4.2 25 785 1,147 354 | 55 42 4 S 26.1 8 166 4 24.4 102 46 6 21.6 12.8 17 8 13.5 .8 2.4 1.6 10 10 4 4 .8 12 8.5 21 16 9.6 15 7.5 22 12 29.6 11.2 20 6.6 11.2 2 61 20 6.6 8.5 4.2 25 6.1 785 1,147 354 30 6.1 | 55 42 4 S 26.1 5.56 8 166 4 24.4 5.28 102 46 6 21.6 5.28 12.8 17 8 13.5 5.15 .8 2.4 1.6 10 10 8.40 4 4 .8 12 8.5 7.29 21 16 9.6 15 7.5 4.76 22 12 29.6 20 6.6 4.0 11.2 2 61 20 6.6 4.0 8.5 4.2 25 6.1 3.23 785 1,147 354 30 6.1 1.63 | 55 42 4 S 26.1 5.56 8 166 4 24.4 5.28 102 46 6 21.6 5.28 12.8 17 8 13.5 5.15 .8 2.4 1.6 10 10 8.40 4 4 .8 12 8.5 7.29 21 16 9.6 15 7.5 4.76 22 12 29.6 11.2 2 6.6 4.0 4.2 25 6.1 3.23 785 1,147,354 30 6.1 1.63 | 55 42 4 8 26.1 5.56 —1.4 8 166 4 24.4 5.28 —1.0 102 46 6 21.6 5.28 —1.6 1.2.8 17 8 13.5 5.15 —1.0 1.8 2.4 1.6 10 10 8.40 108 —1.4 4 4 8 12 8.5 7.29 —1.0 11 5 7.5 4.76 0 0 0 22 12 29.6 11 20 6.6 4.0 1.0 8.5 4.2 4.2 25 6.1 3.23 1.0 785 1,147 354 30 6.1 1.63 2.4 | # TABLE 17. LAKE: CLEAR (Steuben) Date: 7/15/29 | ankton | | | | |--------|--|--|--| | | | | | | | | D | ssolved | Gases | | | |-------------------------|-------|-------|------|---------|------|----|------|---------|-------|------|-------| | Species | 0-5 | 5-10 | 10-1 | 5 15-20 | | D | т | 0 | -% | CO2 | Сь | | Ceratium | 965 | 596 | 34 | 17 | 1 | s | 24.2 | 6.37 | 107 | - | - | | Dinobryum | 64 | 25 | | | 1 | 2 | 23.7 | 6.51 | 1 | .02 | | | Aneura | 9.6 | 3.2 | 3.2 | 4 | 1 | 4 | 23.3 | J | 107 | .98 | 24.46 | | Polyarthra
Noltholca | 1 | | .8 | 1.6 | 1 | 6 | 21.1 | 6.56 | 110 | .98 | 24.98 | | Triarthra | | | 3.2 | 1.6 | 1 | 8 | 1 | 6.57 | 107 | | 24.70 | | Daphnia | 2.4 | 2.4 | ſ | 1 | 1 | 1 | 15.2 | 9.65 | 139 | 1.72 | 24.18 | | Holopedium | 1.6 | .8 | 1 | | | 10 | 12.7 | 5.79 | | 1.62 | 27.18 | | | | " | | 1 | | 12 | 11.7 | 4.16 | | 2.96 | 26.92 | | Diaptomus | 20 | 10 | 14 | 13.6 | 1 | 15 | 11.1 | 3.30 | | 2.70 | 27.98 | | Cyclops | 26 | 18 | 6 | 2.4 | 1 1 | | | | | | | | Nauplii | 56 | 28 | 2.4 | 7.2 | | 20 | 10.6 | 2.77 | | 2.94 | | | | | | | | | | | | | 2.94 | 27.42 | | Melosira | 328 | 3,672 | 132 | 114 | ' I | 1 | | i | | ł | ĺ | | Fragillaria | 1 | | | | - 1 | 25 | 10.6 | 2.48 | 1 | 2.94 | 26.68 | | Asterionella. | | | 1 | | | ŀ | | | - 1 | | | | Anabena | 1 | | | | - 1 | 30 | | | | | | | Clathrocyctis | 2,406 | 529 | 104 | 136 | - 1 | 32 | | 1.65 | | 2.94 | 27.18 | | Oscillatoria | 64 | | 4 | 100 | - j | 32 | 10.2 | | - 1 | - 1 | | | Lyngbya | | | - | - 1 | -]. | | | - | | ı | | | | | ! | | | | | | | | - 1 | 1 | # TABLE 18. LAKE: CLEAR Date: 8/5/29 Plankton | Species | 0-5 | 5-10 | 10-15 | 15-20 | | D | Т | 0 | % | CO ₂ | Cb | |---------------|-------|-------|-------|-------|-----|------|------|------|-----|-----------------|-------| | Ceratium | 320 | 72 | 25 | 8 | | s | 22.2 | 5.65 | | 98 | 24.40 | | Dinobryum | 4 | | | | | 2 | 22.2 | 5.82 | | 98 | 23.90 | | Aneura | 76 | 32 | 21 | 17 | | 4 | 22. | 5.88 | | 74 | 24.40 | | Polyarthra | | | 4 | | | 6 | 21.7 | 5.79 | ĺ | 74 | 24.14 | | Noltholea | .8 | | | 4 | | 8 | 14.7 | 9.38 | 134 | -1.74 | 26.38 | | Daphnia | 1.6 | 4 | 1.6 | 3.2 | | , 10 |
12.5 | 4.25 | ļ | 2.98 | 27.38 | | | ļ | | | 1 | · · | 12 | 11.7 | 2.44 | | 3.48 | 27.62 | | Diaptomus | 2.4 | 16.8 | 15 | 8.8 | | 15 | 10.9 | 1.60 | | 4.22 | 28.38 | | Cyclops | 6.4 | 10.4 | 5.6 | 5.6 | | | | | | | | | Nauplii | 16.8 | 10.2 | 11 | 5.6 | | 20 | 10.6 | 1.19 | | 4.72 | 27.38 | | Melosira | 68 | 12 | 46 | 128 | | | | | | | | | Fragillaria | 46 | 17 | 17 | 12 | | 25 | 1.6 | .70 | | 4.98 | 28.62 | | Asterionella | | | | | | | | | | | 1 | | Anabena | 106 | 25 | 8 | | | | ŀ | | | | | | Clathrocyctis | 3,200 | 473 | 273 | 93 | | 30 | | .08 | | 5.72 | 28.18 | | Oscillatoria | 153 | 136 | 102 | 68 | | 32 | 10.4 | | | | | | Lyngbya | 537 | 1,036 | 209 | | | | | | | | | TABLE 19. LAKE: FOX Date: 7/10/29 Plankton | | | ian | kton | | | , | - / | n | tana a | | | | |-------------------------|--------|-------|------|-------|-------|-----|---------|------|----------|---------|-----------------|---------------| | Species | 0. | -5 | 5-10 | 10-15 | 15-20 | T | Ţ | _ | rssorvec | I Gases | | | | Ceratium | 89 |
1 | 234 | | 10-20 | | D | T | 0 | % | CO ₂ | Cb | | Dinobryum | | 3.5 | 8 | 145 | | | s | 24.4 | 6.2 | 106 | 1.22 | 00 4 | | Aneura | 12 | | | | | | 2 | 24.2 | 6.2 | 106 | 1 | 26.4
25.9: | | Polyarthra
Asplanena | 25 | | | 1 1 | | | 4 | 21.9 | 6.2 | 102 | 1 . | 25.6 | | 1 | 25 | - | 12.8 | 4.2 | - 1 | | 6 | 15.0 | 8.6 | 123 | () | 39.28 | | Daphnia | 4 | . | 4.8 | 5.6 | | - 1 | 8
10 | 12.8 | 1.8 | Ι. | 1 1 | 31.06 | | | | | | | | | 10 | 11.1 | .32 | | 6.84 | 2.28 | | Diaptomus | 20 | - | | | | - 1 | | | 0 | | 7.32 | 2.52 | | Cyclops | 8 | 1 | | 2.4 | | | 15 | 11.1 | 0 | - 1 | 6.10 3 | 3.12 | | Nauplii | 25 | | | .8 | | | 17.5 | 10.8 | 0 | - 1 | - 1 | | | Corethra | | 19 | 12 | | | | - 1 | | | - 1 | 3.12 3 | 3.12 | | Melosira | 51 | 1 | 2 | 8 | - 1 | | | | - 1 | | | | | Fragillaria | 17 | 8 | 5 3 | 49 | | | | | - 1 | - 1 | | | | Asterionella
Anabena | 4 | | 4 | 17 | | | - 1 | | | | | | | Hathrocyctis | 102 | | - 1 | 4 | | | | 1 | | | | - 1 | | scillatoria | 1,262 | 550 | 122 | - 1 | | | | | - | | | - 1 | | yngbya | 31,091 | 256 | | 8 | | | 1 | | | | | | | | 51,001 | ### TABLE 20. LAKE: GAGE Date: 7/6/29 #### Plankton | Species | 0-5 | 5-10 | 10-15 | 15-20 | | D | т | 0 | % | CO2 | Сь | |-------------------------|----------|--------|----------|-------|----|------|------|------|-----|------|-------| | Ceratium | 477 | 128 | 140 | 46 | ١. | s | 22.2 | 5.9 | | .98 | 28.86 | | Dinobryum | 1,710 | 46 | 499 | 72 | | 2 | 22.2 | 5.9 | | .48 | 28.60 | | Aneura | 8
29 | 38 | 42
17 | 4.2 | | 4 | 20.9 | 6.1 | | .48 | 28.60 | | Hexarthra
Polyarthra | | 4.2 | | 17 | | 6 | 20.6 | 6.0 | | .48 | 28.60 | | NoItholea
Asplanena | 25
21 | 42 | 34 | 4.2 | | 8 | 14.4 | 11.2 | 158 | 2.98 | 28.86 | | Daphnia | 13 | 5.6 | .8 | .8 | | 10 | 12.5 | 4.3 | | 2.48 | 29.34 | | Bosmina | 1.6 | | | | | 12 | 11.5 | 4.0 | | 4.96 | 30.34 | | | | ļ | ł | 1 | | 15 | 10.9 | .03 | | 4.46 | 31.48 | | Diaptomus | 36 | 4.8 | 1.6 | | | 15 | 10.9 | .03 | | 4.40 | 01.40 | | Cyclops | 16 | 24 | 3.2 | 1.6 | | | İ | | | | | | Nauplii | 55 | 12.8 | 4 | | | 21.5 | 10.6 | 0 | | 5.46 | 31.48 | | Corethra | | 1.6 | .8 | | | 21.5 | 10.0 | 0 | | 0.40 | 31.43 | | Melosira | 157 | 4 | 55 | 25 | | | | | | | | | Fragillaria | 857 | 170 | 392 | 157 | | | | | | | | | Asterionella | 106 | ļ | 17 | 4.2 | | | | | | | | | Anabena | 42 | 12 | | | | | | | | | | | Clathrocyctis | 1,608 | 302 | 226 | 38 | | | | | | | | | Oscillatoria | | | | | | | | | | | | | Lyngbya | 1,220 | 74,133 | 1,933 | 200 | | | | | | | | TABLE 21. LAKE: GAGE Date: 8/3/29 #### Plankton | | | | | | | | | solved | Gases | | | | |---------------|-----|-------|-------|-------|-----|-----|------|--------|-------|-------|-------|---| | Species | 0-5 | 5-10 | 10-18 | 15-20 | | D | Т | 0 | % | CO2 | Cb | | | Ceratium | | 153.6 | 51 | 51 | | s | 24.4 | 5.31 | | 0 | 26.64 | | | Dinobryum | - | 332.8 | 332 | 92 | | 2 | 24.4 | 5.16 | ł | 0 | 27.63 | j | | Aneura | | 45 | 10 | 15 | | 4 | 23.9 | 5.17 | | 0 | 26.89 | | | Polyarthra | | | | | | 6 | 20.4 | 5.05 | | 0 | 27.39 | l | | Noltholca | 1 1 | 81.9 | 20 | 5 | | 8 | 15 | 10.64 | 153 | -1.24 | i | l | | Daphnia | | 7.6 | ł | | | 10 | 12.8 | 1.31 | | 3.98 | 29.88 | l | | Asplanena | 1 1 | 35 | | | | 12 | 11.7 | .27 | | 5.00 | 30.37 | | | Diaptomus | | .9 | | .9 | | 15 | 11.1 | 0 | | 4.98 | 30.87 | | | Cyclops | | 4.8 | 8 | .9 | | | | | | | | ĺ | | Nauplii | | 29.4 | 5 | .9 | | | ij | | | | | i | | Corethra | 1 | 2 | 5 | | | 21 | 10.6 | 0 | | 8.46 | 39.54 | | | Melosira | 2 | 225 | 122 | 9.2 | | 1 | ĺ | | | - 1 | | | | Fragillaria | | 40 | 5 | 20 | - 1 | ł | ł | ĺ | | . | | | | Asterionella | 1 1 | 35 | | j | 1 | - 1 | | - 1 | - 1 | | | | | Anabena | | 5 | | | | | | 1 | ł | | | | | Clathrocyctis | | 97 | 302 | 97 | Ì | - 1 | | | | | [| | | Oscillatoria | | | | 5 | | | ľ | | | | | | | Lyngbya | 4 | 3,950 | 936 | 424.9 | | | ĺ | | - 1 | | | | TABLE 22. LAKE: GEORGE Date: 7/8/29 #### Plankton | Species | 0-5 | 5-10 | 10-15 | 15-20 | | D | Т | 0 | % | CO2 | Сь | |-------------------------|-------|------------|-------|-------|---|----|-------|-----|---|------|-------| | Ceratium | 2,056 | 413 | 59 | 8 | | s | 23.35 | 5.7 | | | 30.60 | | Dinobryum | 93 | 17 | 4 | 1 | | 2 | 23.1 | 5.7 | | | 28.86 | | Aneura
Noltholca | 8.5 | 4.2
8.5 | | | | 4 | 23.0 | 5.7 | | | 28.60 | | Polyarthra
Asplanena | 8.5 | 8.5 | | | | 6 | 21.1 | 5.4 | | | 29.34 | | Hexarthra | 34 | 4.2 | | | | 8 | 15.9 | 4.2 | | 1.76 | 31.94 | | Daphnia | 1.6 | 9.6 | 23 | 6 | | 10 | 13.9 | 4.1 | | 3.22 | 32.34 | | | 1 | | | | | 12 | 12.5 | 3.2 | | 2.72 | 30.60 | | Diaptomus | 17 | 12 | 3 | | | 15 | 12.0 | 2.0 | | 5.96 | 33.32 | | Cyclops | 3.2 | 2.4 | 4.8 | 2 | ĺ | | | | | ŀ | ١. | | Nauplii | 34 | 8 | 17 | 3 | | 20 | 11.1 | 1.2 | | 4.26 | 33.32 | | Corethra | | 1 | | | | | | | | | | | Melosira | 55 | 25 | 85 | 64 | | | | | | | | | Fragillaria | 1,373 | 149 | 136 | 17 | | 25 | 11.1 | .93 | | 5.46 | 33.08 | | Asterionella | 34 | 8 | 29.8 | 4 | | | | İ | | | | | Anabena | | | | | | | | ł | | | i | | Clathrocyctis | 469 | 597 | 213 | 123 | | | | | | | | | Oscillatoria | 110 | 51 | 21 | 17 | | | İ | 1 | | | | | Lyngbya
Spir | 21 | 8 | 8 | | | | | | | | | TABLE 23. LAKE: GEORGE Date: 8/2/29 | | Pia | nkton | | | | | D | issolved | Gases | | | | |---------------|-------|---------|--------|---------|-----|-----|------|----------|-------|------|-------|----| | Species | 0-5 | 5-10 | 10-1 | 5 15-20 | | D | Т | 0 | 1 % | Co | 2 Ch | - | | Ceratium | 341 | 42 | 12.8 | 34 | | s | 25.6 | 1 | - | | | _ | | Dinobryum | 29 | 1 | | | 1 | 2 | 1 | 6.22 | 108 | 0 | 27.6 | 2 | | Aneura | 28 | 59 | 2.4 | . | 1 | | 25.4 | 6.36 | 111 | 0 | 27.38 | 3 | | Polyarthra | 2 | 1.6 | 1 | 1- | | 4 | 25.4 | 6.02 | 105 | 0 | 28.12 | 2 | | | | 1 | | 1 1 | | 6 | 21.7 | 5.21 | | 0 | 28.88 | , | | Daphnia | .8 | 2.4 | 1.6 | 1 ! | | 8 | 17 | 1.45 | | 3.98 | 30.86 | 1 | | | | 2.4 | 1.6 | 5.6 | - 1 | 10 | 13.9 | 2.01 | | 4.22 | 31.86 | 1 | | Holopedium | .8 | | - | | | 12 | 12.5 | 1.62 | | 5.98 | 32.36 | -1 | | Diaptomus | 4.8 | 11.2 | .8 | 4 | | 15 | 11.7 | .41 | | 5.98 | 33.00 | 1 | | Cyclops | 6.4 | 13.5 | 3.2 | 4.8 | - 1 | | 1 1 | | | 0.00 | 33.00 | l | | Nauplii | 16 | | 2.4 | 4 | - 1 | | | 1 | | | | l | | Corethra | 1 | 1 1 | .8 | 1 | | 20 | 11.1 | .06 | | 6.72 | 33.36 | | | Melosira | 1 | | .0 | | | | ' | | | | | | | Fragillaria | 1,211 | 281 | 133 | 93 | | 25 | 11.1 | .10 | | | | | | Asterionella | | | | 90 | | - 1 | | . 10 | - [| 6.42 | 34.86 | | | Anabena | 1 1 | - 1 | 1 | | - 1 | 1 | | | - 1 | - | | | | Clathrocyctis | 859 | 1,156 1 | .830 2 | | 1 | - 1 | . | | - | | | | | Oscillatoria | | -, 100 | ,000 | 204 | | - 1 | | | - 1 | | İ | | | Lyngbya | - 1 | | TABLE 24. LAKE: GOLDEN Date: 7/25/29 Plankton | | | | | | | | 21. | sorved v | Gaoto | | | |--------------------------------------|-----------------------|-------|-------|-------|---|-----|------|----------|-------|-------|-------| | Species | 0-5 | 5-10 | 10-15 | 15-20 | | D | т | 0 | % | CO2 | Сь | | Ceratium | 891 | 153.6 | | | | s | 26.1 | 5.07 | | 3.18 | 46.0 | | Dinobryum | 46 | 93 | | | | 2 | 23.9 | 4.92 | | 4.42 | 48.6 | | Aneura | 81 | 17 | | | | 4 | 18.9 | .89 | | 13.28 | 46.74 | | Polyarthra
Noltholca
Asplanena | 123 | 8 4 | | | | 6 | 13.7 | .09 | | 13.76 | 48.70 | | Hexarthra
Daphnia | 123
85
34
25 | 5 | | | | 9.5 | 11.7 | 0 | | 18.44 | 63.46 | | | | | | | | | | | | | | | Diaptomus | 3 | | | | | | | | | | | | Cyclops | 16 | ١., | | | ı | | | | ! | | | | Nauplii | 48 | 8 | | j | | | | | | | | | Pediastrum
Melosira | 8.5
3,784 | 878 | | | | | | | | | | | Fragillaria | 6,417 | 768 | i | | ſ | | | | | | | | Asterionella | 9,975 | 2,551 | | - 1 | | | | | | | | | Anabena | | | ĺ | | | - 1 | | - 1 | | | i | | Clathrocyctis | 405 | 145 | | | - | 1 | 1 | | | | | | Oscillatoria | 1,331 | 29 | ļ | | | | | | | | | | Lyngbya | 550 | 102 | 1 | | - | j | | | | | | TABLE 25. LAKE: HAMILTON Date: 7/11/29 Plankton | | | | | | | | | D | issolved | Gases | | | |-------------------------|----------|-------|------|-------|-------|-----|-----|----------|----------|-------|-----------------|-------| | Species | 0- | 5 | 5-10 | 10-15 | 15-19 | | D | T | 10 | _ | 7 | _ | | Ceratium | 729 | | 64 | 25 | - | - | - | <u> </u> | | % | CO ₂ | Сь | | Dinobryum | 51 | - 1 | 4 | 25 | 17 | 1 | s | 24.4 | 7.1 | 122 | 1.22 | 26.4 | | Aneura
Hexarthra | 85 | | 17 | 4 | 1 | 1 . | 2 | 24.4 | 7.1 | 122 | .98 | 25.2 | | Polyarthra
Noltholca | 46.9 | 1 | . | * | | 1 1 | 4 | 23.1 | 6.3 | 105 | .48 | 25.9 | | Asplanena
Triarthra | 42 | 11 | 4 7 | | -00 | 1 1 | 6 | 18.9 | 4.3 | | .98 | 27.1 | | Daphnia | 4.
7. | 2 1 | 4 | 6 | 29 | | . 8 | 14.4 | 1.42 | | 5.18 | 28.66 | | Pediastrum | 1. " | | 8.5 | ۰ | 8.8 | | 10 | 13.6 | 1.28 | | 6.92 | 29.64 | | | | | | | - 1 | | 12 | 13.3 | 1.20 | | 6.92 | 29.64 | | Diaptomus | 28 | 1. | 1.8 | | . | - 1 | 15 |
12.5 | .7 | | | | | Cyclops | 2 | 12 | - 1 | 13 | | | | | - ' | - 1 | 6.16 | 29.64 | | Nauplii | 123 | 49 | - 1 | | 15 | - 1 | 19 | 11.7 | .0 | | | | | | 1. | 1 | | - 1 | 10 | | - 1 | - 1 | | - 1 | 9.62 | 30.38 | | Melosira | 209 | 243 | 19 | 2 / | 34 | | | | | i | | | | Fragillaria | 4,501 | 823 | 46 | , | - 1 | - 1 | - 1 | | | | i | | | Asterionella | 307 | 72 | | 4 | Ŭ | - 1 | | | | | - 1 | | | Anabena | 273 | 4 | | 1. | | 1. | - 1 | | | - 1 | | | | | 3,426 | 964 | 354 | 1 21 | , | 1: | | | | | | | | Osoillatoria | 42 | 8 | 21 | 1 | | 1. | 1 | | | | | | | Lyngbya | | | | | - 1 | 1. | | | | | - 1 | | | | | | | | ᆜ. | 1 | | | | | | | ### TABLE 26. LAKE: HAMILTON Dissolved Gases Date: 7/31/29 | | Plankton | | | | | | | | | | | |---------------|----------|-------|-------|-------|---|----|------|------|-----|-----------------|-------| | Species | 0-5 | 5-10 | 10-15 | 15-20 | | D | Т | 0 | % | CO ₂ | Cb | | Ceratium | 174 | 25 | 4.6 | 12 | | s | 27.2 | 6.48 | 116 | 72 | 24.40 | | | 2.8 | | | | ļ | 2 | 26.9 | 6.47 | 115 | 48 | 23.42 | | Dinobryum | 2.0 | | | | ļ | 4 | 23.9 | 6.08 | 103 | 0 | 24.4 | | Aneura | | | | 1 | | 6 | 20 | 2.74 | 1 | 2.68 | 26.58 | | Polyarthra | | | | 4.6 | | | 1 | .31 | i | 5.60 | 28.78 | | | | | | | | 8 | 15.4 | 1 | 1 | 8.28 | 29.76 | | Daphnia pulex | 1 | 4 | | 1.6 | | 10 | 13.9 | .31 | i | 1 | 1 | | D. retrocurva | 28 | ĺ | | | ! | 12 | 13.3 | .06 | | 6.40 | 30.00 | | : | | | | | | 15 | 12.8 | 0 | ļ | 7.32 | 29.02 | | Diaptomus | 4 | | 5.6 | | | 10 | 12.0 | - | ŀ | İ | | | Cyclops | 8.8 | 17 | 4.8 | 2.4 | | 19 | 11.7 | 0 | | Ì | | | Nauplii | 61 | 40 | | 7.2 | | | | | 1 | | | | | | | 1 | | | 1 | 1 | | | 1 | | | Melosira | 51 | 102 | 21 | | | | 1 | | 1 | 1 | | | Fragillaria | 256 | 68 | | 46.9 | | 1 | | | | 1 | | | Asterionella | 38 | 89 | 12.8 | 12.8 | | | - | | | | | | Anabena | 332 | 38 | 1 | | | | | | | | 1 | | Clathrocyctis | 3,306 | 1,079 | 294 | 273 | | | | | | | | | Oscillatoria | 17 | | | | 1 | | | | 1 | ļ | | | Lyngbya | | | | | | | 1 | | | | | TABLE 27. LAKE: HOG Date: 7/23/29 . | | Plan | kton | | | | | Di | ssolved | Gases | | | | |---------------------------------|-------------------|------------------|-------|-------|---|---|------|---------|-------|-----------------|-------|---| | Species | 0-5 | 5-9 | 10-15 | 15-20 | Π | D | Т | 0 | | 1 | _ | _ | | Ceratium | 1,058 | 268 | - | | | | | | % | CO ₂ | Сь | | | Dinobryum | 4,151 | 529 | 1 | | | s | 26.6 | 5.98 | 106 | 0 | 27.80 | _ | | Aneura | 8 | - | | | | 2 | 26.6 | 5.76 | 102 | 0 | 28.24 | | | Polyarthra
Asplanena | | 1 | | | | 4 | 23.9 | 6.25 | 106 | 0 | 28.60 | ĺ | | Hexarthra | 51 | 25 | | - 1 | | 6 | 19.4 | 5.21 | | 3.40 | 31.32 | I | | Daphnia | 128 | 21 | | - 1 | | 9 | 13.3 | .34 | | 6.62 | 38.54 | 1 | | | 3.6 | 4.8 | | - 1 | | | 1 | 1 | | 0.02 | 90.04 | l | | Diaptomus
Cyclops
Nauplii | 6.4
12
24.8 | 4.8
4.8
28 | | | | | | | | | | | | Melosira | 17 | 12 | | | | | | | - 1 | 1 | | | | Fragillaria | 2,124 | 419 | | | | 1 | | | | | - 1 | | | Asterionella | 1 1 | 8 | - 1: | | | | | | | İ | - 1 | | | Anabena | | 4 | | | | | | | | | | | | | 1,356 | 435 | - 1 | | | | | | | | | | | Oscillatoria
Lyngbya | | 268 | | | | | | | | | | | ## TABLE 28. LAKE: HOG BACK Date: 7/24/29 24 Plankton | Species | 0-5 | 5-8 | 10-15 | 15-20 | D | T | 0 | % | CO ₂ | Cb | |---------------------------------------|------------------|------------|-------|-------|---|------|------|---|-----------------|-------| | Ceratium | 3,741 | 567 | | | s | 24.7 | 4.90 | | 0 | 40.28 | | Dinobryum | 89 | 21 | | | 2 | 23.6 | 5.01 | | 0 | 40.74 | | Aneura | 179 | 12.8 | | | 4 | 19.4 | .54 | | 5.90 | 42.44 | | Polyarthra
Hexarthra
Noltholca | 46 | 51
4 | | | 6 | 14.4 | 0 | | 12.02 | 44.94 | | Asplanena
Daphnia | 140
200
40 | 25
3 | | | 8 | 13.9 | 0 | | 16.78 | 48.12 | | | | | | | ! | | | | | | | Diaptomus | 4.8 | .8 | | | | | | | | ļ. | | Cyclops | 56 | 1.6 | | | | | | | | | | Nauplii | 115 | 12.8 | | | | | | | | | | Melosira | 4,906 | 503 | | - | | | | | | | | Fragillaria
Tabellaria | 1,463 | 512 | | | | | | | | | | Asterionella | 13,644 | 2,990 | | | | | | | | | | Anabena | 34 | | 1 | | | | | | | | | Clathrocyctis | 1,288 | 277 | | | ļ | | | | | | | Oscillatoria
Pediastrum
Lyngbya | 38
3,946 | 213
750 | | | | | | | | | TABLE 29. LAKE: JAMES LAKE, Station N. Date: 6/19/29 Plankton Disseland O | | | | | | | | Di | solved | Gases | | | |------------------------|--------|------|-------|---------|-----|----|-------|--------|-------|------|-------| | Species | 0-5 | 5-10 | 10-18 | 5 15-20 | | D | Т | 0 | 1 % | CO: | Сь | | Ceratium | 2,448 | 332 | 284 | 11 | | s | 24.4 | 6.1 | 104 | - | - | | Dinobryum | 19,051 | 288 | 136 | 21 | | 2 | 23.3 | 6.2 | 104 | | 39.96 | | Aneura
Triarthra | 25 | 3 | 7 | 12 | | 4 | 20.8 | 6.5 | 104 | | 38.42 | | Polyarthra | ł | 1 | 1 | 8 | | 6 | 17.8 | 6.8 | 103 | | 37.40 | | Noltholca
Asplanena | 1 | 1 | 2 | ١, | | 8 | 13.75 | | 100 | 1.26 | 38.92 | | Daphnia | 4.5 | 6 | 4 | 6 | | 10 | 12.8 | 5.1 | ĺ | 1.50 | 38.92 | | Holopedium | 113 | | | 1 | | 12 | 11.4 | 5.4 | | 1.50 | 37.92 | | Diaptomus | 12 | 89 | ł | 4 | | 15 | 10 | 5.2 | | 1.50 | 38.92 | | Cyclops | 13 | 64 | | 5 | - 1 | | | | | | 30.02 | | Nauplii | 19 | 64 | | 4 | | 20 | 7.3 | 4.8 | | 1.50 | 38.42 | | Melosira | 7,597 | | 236 | 217 | - | | | | | | | | Fragillaria | 9,525 | l i | 1,752 | 1,203 | | 25 | 6.7 | 2.3 | | 3.52 | 38.92 | | Asterionella | 567 | 1 1 | | 196 | | | | ł | | - 1 | | | Anabena | | | 1 | 179 | | | 1 | | | ļ | | | | 11,680 | 204 | . | [| | | | 1 | l | | | | Oscillatoria | 226 | | 12 | . | | | | ŀ | l | | ĺ | | Lyngbya | - 1 | | | | | | | Í | - 1 | į | | #### TABLE 30. #### LAKE: JAMES, Station B. Date: 6/21/29 Dlamleton | | Plank | | | Diss | olved C | ases | | | | | |-------------------------|-------|------|-----------|--------|---------|--------------|-----|------------|-----------------|----------------| | Species | 0-5 | 5-10 | 10-15 | 15-20 | D | Т | 0 | % | CO ₂ | Сь | | Ceratium | 1,105 | 298 | 76 | 93 | S
2 | 24.2
23.9 | 6.0 | 103
104 | 50
74 | 37.40
36.90 | | Dinobryum | 3,357 | 439 | 149 | 51 | 4 | 21.4 | 6.3 | 103 | 74 | 36.40 | | Aneura
Hexarthra | 42 | 4.2 | 17
4.2 | 49 | 6 | 16.9 | 6.4 | | 50 | 37.66 | | Polyarthra
Noltholca | 8 | 12.8 | 4 | 4.2 | . 8 | 14.4 | 6.1 | | 0 | 37.40 | | Triarthra
Asplanena | | 8.5 | 1.6 | 12 4.2 | 10 | 14.2 | 5.8 | | 1.50 | 38.42 | | Daphnia | 8 | 8.8 | 8.8 | 12.8 | 12 | 13.3 | 4.7 | | .50 | 37.66 | | | | | | | 15 | 13.1 | 4.0 | | .62 | 37.92 | | Diaptomus | . 8.8 | 4.8 | 14.4 | 10.4 | | | | | | | | Cyclops | 21.6 | 3.2 | 7.2 | 5.6 | 20 | 11.7 | 2.0 | | 1.38 | 39.18 | | Nauplii | 42 | 29 | 4 | 29.6 | | | | | | | | | | | | | ٠ نـ | | | l | | ļ | | Melosira | 422 | 51 | 119 | 294 | | Ì | İ | | | | | Fragillaria | 849 | 772 | 1,186 | 2,769 | | 1 | | | | | | Asterionella | 273 | 435 | 362 | 593 | | | | | | 1. | | Anabena | | | | | | | l | | | | | Clathrocyctis | 1,809 | 430 | 221 | 264 | | | | | | 1 1 | | Oscillatoria | 38 | 55 | 221 | 12 | | | | | | | | Lyngbya | 558 | 98 | 72 | 25 | | | | | | | | | | | | 1 | | | | | | | TABLE 31. LAKE: JAMES, Station I. Date: 6/26/29 Plankton Dissolved Co. | | | | | | , | | D | issolved | Gases | | | |--------------------------------------|--------------|-------|--------------------|-------|-----|--------|--------------|------------|------------|-----------------|----------------| | Species | 0-5 | 5-1 | 10- | 15-20 | | D | Т | 0 | % | CO ₂ | Cb | | Ceratium | 2,321 | 422 | 179 | 51 | | | 02.0 | | | | | | Dinobryum | 977 | 166 | 17 | 21 | | 8
2 | 23.3
23.3 | 6.3 | 106
108 | 1.21 | 35.76
35.76 | | Aneura | 38 | 17 | 38 | 51 | 1 | 4 | 20.6 | 7.2 | 116 | .72 | 35.76 | | Polyarthra
Noltholca
Triarthra | 12 | 8 | 8 | | | 6
8 | 16.7
13.9 | 7.4
6.9 | 110 | 0 | 36.0
36.50 | | Hexarthra
Daphnia | 4
4
20 | 4 | 8
8
8
7.2 | 21 | 1 | 10 | 12.8 | 5.9 | | 2.20 | 36.50 | | Dapinga | 20 | 4 | 7.2 | 8 | | 12 | 11.7 | 4.8 | | 4.40 | 37.91 | | Diaptomus | 15 | 11 | 10 | 4.8 | | 15 | 10.3 | 5.4 | | 3.42 | 36.74 | | Cyclops | 82 | 6 | 9 | 4.8 | - 1 | | | - 1 | | | | | Nauplii | 11 | 34 | 6 | 11.2 | - 1 | 20 | 8.9 | 2.6 | | 4.90 | 37.24 | | Corethra | 1 | .8 | 4 | 12 | - 1 | 22 | 8.9 | 1.5 | - 1 | - 1 | 37.24 | | Melosira | 64 | 68 | 102 | 435 | - 1 | | | | - 1 | | | | Fragillaria | 2,180 | 1,326 | 1,258 | 2,112 | | | 1 | | 1 | | | | Asterionella | 256 | 422 | 170 | 136 | - 1 | 1 | - 1 | | | 1 | | | Anabena | 1 | | | | - 1 | | | | - | - 1 | | | Clathrocyctis | 5,491 | 1,160 | 516 | 733 | | | | | | | | | Oscillatoria | 81 | 64 | 8.5 | 46 | - 1 | | | | | | | | Lyngbya | 226 | 631 | 388 | 51 | | | | | | | | TABLE 32. #### LAKE: JAMES, Station E. Date: 7/2/29 Plankton | Species | 0-18 | 5-10 | 10-15 | 15-20 | | D | Т | 0 | % | CO ₂ | Сь | |---------------|-------|------|-------|-------|-----|----|------|-----|-----|-----------------|-------| | Ceratium | 1,194 | | | | | s | 22.2 | 7.1 | 116 | -1.55 | 36.21 | | Dinobryum | 8 | | | i | | 2 | 22.2 | 7.0 | 116 | -1.03 | 36.72 | | Aneura | 52 | | | | | 4 | 22.2 | 7.2 | 116 | 1.03 | 36.46 | | Polyarthra | 13 | | | | | 6 | 18.9 | 7.0 | 109 | 0 | 36.98 | | Noltholea | 20 | | | | | 8 | 14.7 | 6.8 | | 1.29 | 37.76 | | Daphnia | 1.7 | | | | | 10 | 13.7 | 5.7 | | 1.81 | 38.03 | | | | | | | | 12 | 13.3 | 4.3 | | 3.10 | 38.53 | | n. | | | | | ı | 15 | 13.1 | 3.7 | | 2.30 | 38.02 | | Diaptomus | 18.7 | | | | | 17 | 12.8 | 2.7 | | 2.84 | 38.28 | | Cyclops | 19.5 | | | | | | | | | 1 | | | Nauplii | 19.3 | | | | | | | | | | | | Melosira | 210 | | | | | | | ļ | | | | | Fragillaria | 4,222 | | | 1 | - | | | | | | | | Asterionella | 722 | | ļ | | - 1 | | | | | | | | Anabena | 4 | | İ | | | | | | | | 2.1. | | Clathrocyctis | 56 | | | | | | | 1 | | | | | Oscillatoria | | | | | | | | | | | | | Lyngbya | 194 | | | | | | | | | | | ### TABLE 33. ## LAKE: JAMES, Station U. Date: 7/2/29 | | | | n | | | | | Di | ssolved | Gases | | | |-----
---------------|-------|------|-------|-------|-----|------|------|---------|-------|-------|-------| | | Species | 0-18 | 5-10 | 10-15 | 15-20 | | D | Т | 0 | 1 % | CO | Cb | | | Ceratium | 610 | - | | | 1 | s | - | | | | | | | Dinobryum | 74 | | | | | 2 | 22.1 | | | | | | | Aneura | 35 | | | | | ł . | 21.7 | | | | 1 | | - | Polyarthra | 11 | | | | | . 4 | 21.1 | 7.01 | 114 | -1.03 | 37.50 | | - 1 | Noltholea | 9 | | - 1 | . | | 6 | 16.4 | 7.07 | 104 | 26 | 38.02 | | - 1 | Daphnia | 3.7 | - [| 1 | | | 8 | 13.9 | 6.7 | | 1.03 | 39.05 | | - | | " | | | ĺ | - [| 10 | 12.8 | 6.2 | | 1.55 | 39.57 | | | | 1 1 | - 1 | 1 | | - 1 | 12 | 11.1 | 5.5 | | 1.81 | 38.02 | | | Diaptomus | 14 | | ĺ | . [| - 1 | 15 | 10.2 | 4.3 | | 3.10 | 38.28 | | | Cyclops | 13 | - 1 | - 1 | 1 | - } | 18 | | | | | 50.20 | | | Nauplii | 13 | - 1 | | - | | . 18 | 10 | 4.1 | | 4.13 | 38.79 | | 1 | Melosira | 158 | | | | | | | | | | | | 1, | Fragillaria | 3,011 | | - 1 | - 1 | | - 1 | | | | - | | | 1 | Asterionella | 389 | | | | | - 1 | | 1 | | | 1 | | 1 | inabena | 369 | | | ĺ | | | | | | İ | - 1 | | 0 | Clathrocyctis | 37 | | - 1 | | | - | | | - 1 | - 1 | | | 1 | scillatoria | | İ | | | | ĺ | | | | - 1 | . / | | L | yngbya | 483 | | | | | | | | | - | - 1: | # TABLE 34. LAKE: JAMES, Station M. Date: 7/4/29 #### Plankton | | | | _ | | | | | | | | | |---------------|-------|------|-------|-------|---|----|------|-----|-----|------|-------| | Species | 0-5 | 5-10 | 10-15 | 15-20 | | D | т | 0 | % | COz | Сь | | Ceratium | 648 | | | | | s | 21.4 | | | | | | Dinobryum | 76 | | | | | 2 | 21.4 | | | | 100 | | Aneura | 39 | | | | | 4 | 21.4 | 6.2 | 101 | 75 | 37.16 | | Polyarthra | 14 | | | | | 6 | 18.9 | 6.0 | , | 50 | 36.90 | | Noltholea | 11 | | | | | 8 | 14.7 | 6.3 | | 1.26 | 37.66 | | Daphnia | 4 | | | | | 10 | 13.7 | 5.4 | | 1.76 | 39.67 | | | | | | | | 12 | 11.7 | 4.7 | | 1.76 | 37.66 | | Diaptomus | 13.9 | | | | | 15 | 10 | 3.7 | | 2.52 | 38.42 | | Cyclops | 12.6 | | | | | | | | | | | | Nauplii | 27.0 | | | | | 19 | 9.7 | 3.2 | | 3.53 | 39.17 | | Melosira | 176 | | | | | | | | | | | | Fragillaria | 3,450 | | | i | | | | | | | | | Asterionella | 436 | | ļ | i | | | | | | | | | Anabena | 1 | | | | ı | | | | | | 1 | | Clathrocyetis | 90 | | | | İ | | | | | | | | Oscillatoria | 34 | | | | | | | | | | | | Lyngbya | 614 | | | | | | | | | | 59 11 | ### TABLE 35. ### LAKE: JAMES, Station N. Date: 8/6/29 #### Plankton | | | | | | 7 | | | | Gases | _ | | | |---------------|-------|------|------|-------|-----|----------|------|--------|-------|-----------------|-------|-----| | Species | 0-5 | 5-10 | 10-1 | 15-20 | | D | т | 0 | % | CO ₂ | Сь | | | Ceratium | 1,271 | 234 | 85 | 140 |] , | s | 22.8 | 5.90 | | 0 | - | - | | Dinobryum | 21 | 17 | 4 | 1 | | 2 | 22.2 | 5.80 | | 1 - | 34.36 | | | Aneura | 243 | 38 | 1 | 12 | | 4 | 22.2 | 5.90 | | 0 | 33.86 | | | Polyarthra | 12 | | | | | 6 | 20.9 | | | 0 | 32.10 | - 1 | | Noltholea | | 4 | 4 | |] [| 8 | 1 | 5.74 | | 0 | 32.16 | - 1 | | Daphnia | 4 | 6 | 2.4 | 2.4 | | _ | 15.5 | 5.79 | | .98 | 37.10 | 1 | | İ | | | 7.7 | 2.4 | | 10 | 13.3 | 3.59 | | 3.22 | 38.34 | 1 | | | | | | i i | | 12 | 11.7 | 2.71 | | 4.22 | 37.58 | ļ | | 1 | 1 | | | | ł | 15 | 10.6 | 2.59 | | 5.22 | 38.34 | 1 | | Diaptomus | 3.2 | 4.8 | | 8 | - 1 | | | - 1.5. | | 0.22 | 30.34 | | | Cyclops | 18.4 | 12 | 2.4 | 5.6 | | | | | | | | l | | Nauplii | 53.6 | 15.2 | 4 | 5.6 | | 20 | 8.3 | 2.77 | | 5.46 | 38.34 | | | Melosira | 42 | 42 | 25 | 38 | | az | | | ĺ | | | | | Fragillaria | 533 | 315 | 149 | 179 | | 25
26 | 7.1 | .06 | - 1 | 7.96 | 40.08 | ŀ | | Asterionella | | | | | - [| - 1 | | í | | | | | | Anabena | 21 | 51 | ĺ | 12 | | 1 | - 1 | - | 1 | 1 | | | | Clathrocyctis | 256 | 793 | 170 | 64 | - 1 | | 1 | | - 1 | | | i | | Oscillatoria | 183 | 332 | 76 | 128 | | | j | | - 1 | | | | | Lyngbya | | | | | | | | | | | | | ## TABLE 36. LAKE: JAMES, Station L. Date: 8/7/29 Plankton | Species | 0-5 | 5-12 | 10-15 | 15-20 | D | Т | 0 | % | CO 2 | Сь | |---------------|------|------|-------|-------|----|------|------|---|------|-------| | Ceratium | 115 | 136 | | | s | 22.2 | 5.82 | | 0 | 35.10 | | Dinobryum | 8.5 | 21 | | | 2 | 22.2 | 5.66 | | 0 | 34.60 | | Aneura | 42 | .8 | | | 4 | 22.2 | 5.73 | | 0 | 34.10 | | Polyarthra | | | | | 6 | 21.7 | 5.36 | | 0 | 34.10 | | | | İ | | | 8 | 15.3 | 4.0 | | 2.72 | 37.34 | | Daphnia | 14 | 9.6 | | | 10 | 13.7 | 2.54 | | 4.72 | 39.08 | | | | | | | 12 | 11.9 | 2.43 | | 4.48 | 38.34 | | Diaptomus | 5.6 | 9.6 | | | | | | | | | | Cyclops | 29.6 | 16 | | | | | | | | | | Nauplii | 64 | 12.8 | | | | | | | | | | Melosira | 25 | 17 | | | | | | | | | | Fragillaria | 149 | 213 | | | | | | | | | | Asterionella | | 4 | | | | | | | | | | Anabena | 8 | | | | | | | | | | | Clathrocyctis | 55 | 388 | | | | | | | | | | Oscillatoria | 149 | 46 | | | | | | | | | | Lyngbya | 4 | 59 | | | | | | | | | TABLE 37. LAKE: JAMES, Station B. Date: 8/7/29 | | | | | | | | | Ţ | Dissolved | Gases | 3 | | | |----|-------------------------|-----|------|--------|--------|---|----|------|--------------|-------|------|----------------|---| | | Species | 0-5 | 5-10 | 0 10-1 | 5 15-2 | 0 | D | Т | 0 | 1 % | CO2 | Cb | - | | 1 | Ceratium | 435 | 256 | 68 | 42 | | s | 22.5 | 5.70 | | 0 | 34.98 | - | | İ | Dinobryum | 12 | | | | | 2 | 22.2 | 5.94 | | 0 | 34.22 | | | | Aneura
Hexarthra | 85 | 25 | 8.5 | 8.5 | ŀ | 4 | 22.2 | 5.33 | | 0 | 33.86 | į | | | Polyarthra
Noltholca | 4 | 12.8 | 1 | 1 | | 6 | 21.4 | 5.51 | | 0 | 34.48 | i | | 1 | Triarthra | | | 4.2 | | | 8 | 16.1 | 4.43
2.35 | | 3.98 | 38.08 | - | | 1 | Daphnia | 4 | 3.2 | | | | 12 | 13.3 | 1.34 | | 4.72 | 39.08
38.08 | | | | | | | 1 | 1 | | 15 | 13.3 | . 58 | | | | | | 1 | Diaptomus | 7 | 8.8 | 10 | .8 | | | 10.0 | .00 | | 6.22 | 38.34 | l | | 1 | Cyclops
Nauplii | 8 | 7.2 | 5.6 | 1.6 | | 20 | 12.2 | .09 | | | | ĺ | | 1 | Corethra | 34 | 29 | 4 | .8 | | 20 | 12.2 | .09 | | 6.22 | 39.58 | | | h | Melosira | 68 | 25 | 17 | 12.8 | | | | | | | | | | 1 | Fragillaria | 209 | 285 | 72 . | 119 | | | | | | | | | | 1 | Asterionella
Anabena | | | | | | | | | | ĺ | | | | | Clathrocyctis | 563 | 742 | 247 | 226 | | | | | | | | | | 1 | ecillatoria | 64 | 42 | 21 | 46 | | | | | ĺ | ŀ | ĺ | | | 1. | yngbya | 59 | 90 | 8 | 17 | ļ | | | | | 1 | | | | _ | | | | | | | 1 | | J | | - 1 | | | TABLE 38. LAKE: JAMES, Station J. Date: 8/8/29 Plankton Dissolved Gases | | Plankto | _ | | | | | | | | | | |-------------------------|---------|-------|----------|-------|---|--------|--------------|------|------------|------|----------------| | Species | 0-5 | 5-10 | 10-15 | 15-20 | | D | т | 0 | % | CO2 | Сь | | Ceratium | 465 | 200 | 51 | 12 | | 8
2 | 22.8
22.8 | 5.99 | 100
102 | 0 | 34.60
33.10 | | Dinobryum | 12 | 1 | 4 | | | 4 | 22.5 | 5.68 | 1 | 0 | 33.36 | | Aneura | 42 | 8 | 8 | 17 | | 6 | 20 | 5.35 | | 0 | 33.86 | | Polyarthra
Noltholea | 4.2 | | 4 | 8 | | 8 | 15.6 | 4.32 | | .24 | 33.84 | | Hexarthra | 4.2 | Ì | _ | | | 10 | 13.1 | 3.68 | | 4.72 | 38.58 | | Daphnia | 14.4 | 4 | .8 | 14 | | 12 | 11.9 | 2.97 | | 4.48 | 37.84 | | | | | | | | 15 | 10.3 | 2.70 | 1 | 6.72 | 37.34 | | Diaptomus | 13 | 9.6 | 4.8 | 8 | | | | 1 | | | | | Cyclops | 32 | 6.4 | 6.4 | 5.6 | | 20 | 1 | 1 | | 1 | | | Nauplii | 16 | 4.8 | 2.4 | 2.4 | | 21 | 8.9 | .13 | 1 | 7.96 | 39.58 | | | | | 1 | | | | 1 | | | | | | Melosira | 68 | 8 | 46 | 64 | | | | | | 1 | 1 | | Fragillaria | 196 | 149 | 55 | 81 | | | - | | | | | | Asterionella | 8 | 4 | 1 | | | | 1 | | | - | | | Anabena | 29 | | | 1 | } | 1 | | | | 1 | | | Clathrocyctis | 435 | 1,181 | i | 554 | | | | 1 | | | ļ | | Oscillatoria | 776 | 25 | 25 | 17 | | | Ì | | 1 | | 1 | | Lyngbya
Synedra | 12 | 25 | 17
17 | 17 | | | | | 1_ | | | TABLE 39. LAKE: JAMES, Station I. Date: 8/9/29 | | Plankt | on | | | | | _ | | | | | | |-------------------------|------------|------|-------|-------|-----|--------|------------|--------------|-------|--------|----------------|-----| | Species | 0-23 | 5-10 | 10-15 | 1 | _ | | D: | ssolved (| Jases | | | | | Ceratium | 345 | | 10-15 | 15-20 | | D | Т | 0 | 1 % | CO2 | СЬ | - | | Dinobryum | 345 | | | | | s | 23 | 6.12 | 102 | 0 | | _ | | Aneura | 41 | | - 1 | - 1 | - 1 | 2 | 23 | 6.01 | 101 | 0 | 34.12
33.62 | | | Polyarthra
Noltholea | 4.7
7.1 | - 1 | - 1 | | - 1 | 4 | 22.6 | 1 | 104 | 0 | 33.38 | - 1 | | Daphnia | 1 '.1 | | - 1 | - 1 | - 1 | 6
8 | 20.9 | 10.10 | | 0 | 33.62 | -1 | | Dapnnia | 5.9 | | - 1 | | - | 10 | 15
13.3 | 4.05 | | 4.0 | 27.30 | 1 | | 1 | | - 1 | - 1 | - 1 | - | 12 | 11.9 | 3.80
2.58 | - 1 | 5.14 | 29.02 | l | | Diaptomus | 9,9 | | - 1- | | | 15 | Ι. | ' 1 |] | 5.88 | 37.56 | l | | Cyclops | 16.9 | | | | 1 | 10 | 10 | 2.12 | - 1 | 5.88 | 38.54 | | | Nauplii | 12.8 | | | | 1 | | - 1 | | - 1 | - 1 | - 1 | | | Melosira | 1 1 | | | | 1 | - 1 | - 1 | - 1 | - 1 | | | | | Fragillaria | 58
402 | | - 1 | - 1 | | 23 | 8.6 | . 17 | 18 | 3.34 4 | 10.26 | | | Asterionella | 102 | | | | 1 | | | | | | .0.20 | | | Anabena | 2 | | - | - 1 | | | | - 1 | | - 1 | | | | Clathrocyctis | 48 | | | | | | | | | | | | | Oscillatoria
Lyngbya | 42 | - | | | | - 1 | | | | | | | | 25 ligoya | 61 | | - | | | | | - 1 | | - 1 | | | | | | | | | | | | | - | - | | | TABLE 40.. LAKE: JAMES, Station N. Date: 8/14/30 | Plankton | Dissolved Goo | |----------|---------------| | Species | 0-5 | 5-10 | 10-15 | 15-20 | | D | Т | 0 | % | CO ₂ | Сь | |-------------------------|-----|----------|-----------|-------|---|----|------|------|---|-----------------|------| | Ceratium
Mallomonas | 887 | 149 | 55
8.5 | 21 | | s | 24.4 | 5.42 | | -1.2 | 33.2 | | Dinobryum | 21 | 8 | 4 | i | i | 2 | 23.6 | 5.45 | İ | -2.4 | 35.6 | | Aneura | 149 | 29 | 4 | 17 | | 4 | 23.3 | 5.39 | | -2.6 | 34.8 | | Polyarthra
Noltholea | 29 | 51
12 | | 4 | | 6 | 23.3 | 5.13 | | -2.0 | 35.6 | | Asplanena | 4 | 1 | ļ | 1 | | 8 | 15 | 3.67 | | 0 | 40.0 | | Daphnia | | 6.4 | .8 | 4 | | 10 | 11.5 | 3.25 | | 1.0 | 41.4 | | | | | | | | 12 |
9.1 | 2.97 | | 1.0 | 40.8 | | Diaptomus | 14 | 20 | .8 | 1.6 | | 15 | 8.1 | 2.71 | | 1.0 | 41.4 | | Cyclops | 47 | 12 | 2.4 | 3.2 | | 1 | 1 | | | | | | Nauplii | 857 | 7 | .8 | 9.6 | | 20 | 6.6 | 2.44 | | 1.4 | 41.4 | | Melosira | 81 | 51 | 12 | 46 | | | | | | | | | Fragillaria | 529 | 247 | 38 | | | 25 | 6.1 | .08 | | 1.4 | 42.8 | | Asterionella | | | | | | | | | | | | | Anabena | 12 | 8 | 4 | - 1 | | | | | | | | | Clathrocyctis | 588 | 337 | 64 | 59 | | | | | | | | | Oscillatoria | 81 | 136 | 25 | 59 | | | | İ | | ĺ | | | Lyngbya | | | | | | | | | | | | TABLE 41. LAKE: JAMES (3rd Basin) Date: 8/22/30 | 1 | FIA | nkton | | | | | | D | issolved | l Gases | | | |--------------------------------------|----------------|----------------|-----------|-------------|-------------|--------|--------------|--------------|----------|---------|--------------|------| | Species | 0-4 | 5 5-1 | 0 10-1 | 5 15-2 | 0 | D | т | 10 | % | CO2 | Ch | 7 | | Ceratium
Mallomonas | 1,03 | 2 204 | 145
17 | 145 | | s | 22.2 | 5.71 | | | - | pH | | Dinobryum
Uroglea
Aneura | 34
89
68 | 12
29
46 | 21 | 8 | 1 | 2 | 22.2 | 1 | | -2.0 | | 8.3 | | Difflugia
Polyarthra
Noltholca | 138
21 | 46 | 29
17 | 46
25 | | 4
6 | 22.2 | 0.02 | | -1.4 | 34.0 | 8.3 | | 1 | 12 | | 21 | 34 | $ \cdot $ | 8 | 22.2
15.2 | 5.83
5.61 | | -2.0 | 33.8 | 8.3 | | Daphnia
Diaphanosoma | 4.8 | 1.6 | 2.4 | 10.4
3.2 | | 10 | 11.6 | 2.90 | | .4 | 35.8
40.4 | 7.8 | | | | | | | | 12 | 9.4 | 2.72 | | 1.0 | 41.0 | 7.6 | | Diaptomus | 27 | 7.2 | 8.8 | 14 | | 15 | 7.9 | 2.11 | | 1.6 | 40.4 | 7.5 | | Cyclops
Nauplii | 25 | 26.4 | | 18.4 | | | į | | | | | | | - wapin | 56 | 11.2 | 23.2 | 26.4 | | 20 | 7.2 | 2.45 | | 2.0 | 40 | 7.5 | | Melosira | 174 | 76 | 136 | 140 | | | - 1 | | | 1 | | | | Fragillaria
Asterionella | 840 | 282 | 187 | 174 | | 25 | 6.2 | .06 | İ | 2.4 | 41.4 | 7.2 | | Anabena | 46 | 8.5 | 4 | | | | | | | | | | | Clathrocyctis | 465 | | 1 | 264 | | | | | | 1 | | | | Oscillatoria | 106 | 17 | 25 1 | 28 | | | | | | 1 | | | | Lyngbya | 132 | | 46 | 81 | | | | | | | - | . - | #### TABLE 42. #### LAKE: JAMES (3rd Basin) Date: 8/30/30 #### Plankton | 0-5 | 5-10 | 10-15 | 15-20 | | D | Т | 0 | % | CO ₂ | Сь | pН | |-----|------|-------|-------|---|------|-------------------------------|---|---|--|--|--| | | | | | | s | 23.3 | 5.71 | | 2.2 | 33.8 | 8.3 | | | | | | | 2 | 23 | 6.42 | 107 | 2.4 | 33.6 | | | | | | | | 4 | 22.4 | 6.07 | 101 | -2.6 | 34.4 | i | | | | | | | 6 | 21.6 | 5.73 | | -2.0 | 34.4 | | | | | | | | 8 | 16.1 | 3.39 | | 1.2 | 37.8 | | | | | | | | 10 | 11.7 | 2.56 | | 2.8 | 40.4 | ĺ | | | | | | | 12 | 9.7 | 2.07 | | 2.8 | 44 | | | | | | | Ì | 1,2 | 7.0 | 9 10 | | 0.8 | 10.4 | | | | | | | İ | 13 | 1.0 | 2.10 | | 2.0 | 10.1 | | | | | | | | | | | } | | | | | | | | | | 20 | 6.9 | 2.42 | | 2.0 | 40.4 | 25.5 | 6.2 | .10 | | 2.8 | 43.0 | 7.5 | | | | | ł | İ | | | i | | | | | | | ĺ | i | ĺ | | | | | | | | | | | | | | ĺ | | i | | | | | | 0-5 | | | | | S 2 4 6 8 10 12 15 15 20 25.5 | S 23.3
2 23
4 22.4
6 21.6
8 16.1
10 11.7
12 9.7
15 7.8
20 6.9
25.5 6.2 | S 23.3 5.71 2 23 6.42 4 22.4 6.07 6 21.6 5.73 8 16.1 3.39 10 11.7 2.56 12 9.7 2.07 15 7.8 2.18 20 6.9 2.42 25.5 6.2 .10 | S 23.3 5.71 2 23 6.42 107 4 22.4 6.07 101 6 21.6 5.73 8 16.1 3.39 10 11.7 2.56 12 9.7 2.07 15 7.8 2.18 20 6.9 2.42 25.5 6.2 .10 | S 23.3 5.71 ——2.2 2 23 6.42 107 —2.4 4 4 22.4 6.07 101 —2.6 6 6 21.6 5.73 —2.0 3 8 16.1 3.39 1.2 10 11.7 2.56 2.8 12 9.7 2.07 2.8 15 7.8 2.18 2.8 20 6.9 2.42 2.0 2.0 25.5 6.2 .10 2.8 | S 23.3 5.71 —2.2 33.8 2 34.4 107 -2.4 33.6 4 22.4 6.07 101 —2.6 34.4 6 21.6 5.73 —2.0 34.4 8 16.1 3.39 1.2 37.8 10 11.7 2.56 2.8 40.4 12 9.7 2.07 2.8 44 15 7.8 2.18 2.8 40.4 20 6.9 2.42 2.0 40.4 25.5 6.2 .10 2.8 43.6 | TABLE 43. LAKE: JAMES (3rd Basin) Date: 9/7/30 | | | nkton | | | | | | I | Dissolved | Gases | | | |-----------------------------------|--------------|-----------|-----|-------------|----------|-----|--------|------|-----------|-------|------|------| | Species | 0 | 5 5- | 10 | 10-15 | 15-25 | | D | Т | 0 | _ | T. | | | Uroglea
Ceratium | 691
1,484 | 81
328 | | | | | | | - | % | COz | Cb | | Dinobryum
Mallomonas | 55 | 29 | - 1 | 106
4 | 145 | | s | 22.2 | 5.88 | | -1.6 | 33. | | Aneura | 110
85 | 34 | | 17.1
4.2 | 21
59 | | 2 | 22.2 | 0.11 | 101 | -1.6 | 34. | | Polyarthra
Triarthra | 12. | 38 | - | 17.1 | 12 | | 4
6 | 22.2 | 0.00 | 100 | -2.4 | 32. | | Noltholea | - 1 | 8 | | 8.5 | 8 | | 8 | 21.6 | 5.82 | | -2.4 | 32. | | Daphnia
Bosmina
Diaphanosma | 4
2. | | 1 | 7.2 | 6.2 | | 10 | 11.6 | 3.70 | | 0 | 35. | | - wpaunosma | | -1 | 8 | 12.8 | .8 | - 1 | 12 | 10 | 1.95 | | 1.4 | 37. | | Diaptomus | 4.8 | 3 8 | | | - 1 | | 15 | 8.0 | 1.76 | | | 39.6 | | Cyclops | 16.8 | 9.6 | | 8 | 5.6 | | | 0.0 | 1.76 | - 1 | 1.4 | 41.(| | Nauplii | 21.6 | 10.8 | 1 | 2.8 | 9.6 | | 20 | 6.9 | 1.72 | | 2.0 | 10.0 | | Melosira | 85 | 72 | 81 | . | 85 | | - 1 | | - 1 | | 2.0 | 42.0 | | Fragillaria | 1,766 | 814 | 405 | · / ` | | | 25 | 6.6 | .07 | - 1 | 2.4 | | | sterionella
nabena | 354 | 25 | 46 | | - | | . | | | | 2.4 | 42.0 | | Nathrocyctis | 98 | 477 | 106 | - 1 | a | | | | | - 1 | | | | scillatoria | 106 | 72 | 72 | 41 | ` | | | - 1 | | | | | | yngbya | | 166 | | | | | | | | - 1 | - 1 | | TABLE 44. LAKE: JAMES (3rd Basin) N. Date: 9/20/30 #### Plankton Dissolved Gases | Species | 0-5 | 5-10 | 10-15 | 15-20 | D | Т | 0 | % | CO ₂ | Сь | |---|-------------------------------------|-----------------------------------|----------------------------------|--------------------------|-------------|----------------------|--------------|---|-----------------|----------------------| | Difflugia
Ceratium
Uroglea
Dinobryum
Mallomonas
Aneura | 59
704
302
132
21
81 | 17
311
38
46
33
61 | 17
81
12
17
25
34 | 76
8
30
8
38 | S 2 4 | 21.1 | 5.11 | | -1.25 | 33.4 | | Polyarthra
Noltholca
Asplanena | 34
4.2
4.2 | | 12 | 8 | 6
8
9 | 20.5
16.3
13.8 | 5.56
4.21 | | 0
1.0 | 33.4
34.8
50.4 | | Daphnia
Bosmina | .8 | .8 | 2.4 | 2.4 | 10
12 | 9.4 | 1.19 | | 7.10
1.50 | 40.0 | | Diaphanosoma | .8 | 1.6 | 4 | 4 | 15 | 8 | 1.61 | | 3.02 | 40.4 | | Diaptomus
Cyclops
Nauplii | 7.2
14.4 | 14.4
13.6 | 9.6
14.4 | 3.2 | 20 | 7.0 | 1.55 | | 3.02 | 40.4 | | Melosira | 64 | 38 | 38.4 | 30.8 | 24.5 | 6.6 | .12 | | 4.06 | 41.8 | | Fragillaria
Asterionella | 1,339 | 1,651 | 494 | 264 | | | | | | | | Anabena | 21 | | 8.5 | | | | | | [| | | Clathrocyctis | 252 | 512 | 166 | 187 | | | | | | | | Oscillatoria | 140 | 93 | 17 | 30 | | | | | 1 | | | Lyngbya | 115 | 106 | 57 | | _ | | | | | | TABLE 45. LAKE: JIMMERSON Date: 7/19/29 | | | | | | | | ., | 19/29 | | | | | | | |------------------------------|---|-----------------------|------------------|------------------|-------------------------------|-------|----|--------------------|--------------------------------------|--|-------|---------------------------|--|---| | | | | Plank | on | | | | | | | | | | | | | Species | T | 0-5 | 5-10 | 10-17 | T | T | , | Di | ssolved (| lases | | | | | | Ceratium | | | | 10-17 | 15-20 | | D | Т | 0 | % | CO | | _ | | II
C
N
C
M
Fr | Ceratium Dinobryum Aneura Aneura Aneura Anoloica Asplandna Hexandna Daphnia Bosmina Diaptomus Cyclops fauplii oroethra elosira agillaria terionella | | 1.6 3
.8 13 | 57 242 | 76
4
8
4
8
2.4 | 13-20 | | S 2 4 6 8 10 12 17 | 24.4
24.4
24.2
17.2
13.9 | 0
5.57
5.57
4.53
4.99
3.26
1.77
.47 | 6 | 2.70
2.70
1.94
3 | Cb 33.10 32.62 32.38 34.10 37.56 39.54 8.54 | | | Cla
Osc | abena
throcyctis
illatoria
gbya | 8
682
72
115 | 576
21
413 | 614
17
136 | Ŀ | | | TABLE 46. LAKE: LONG (Steuben) Date: 7/25/29 Dissolved Gases | Species | 0-5 | 5-9 | 10-15 | 15-20 | | D | т | 0 | % | CO ₂ | Cb | |------------------------|---------|---------|-------|-------|---|-----|------|------|---|-----------------|-------| | Ceratium | 1,493 | 362 | | | | s | 24.4 | 5.33 | | 4.18 | 47.72 | | Dinobryum | 435 | 119 | | | | 2 | 21.9 | 5.24 | | 5.40 | 48.94 | | Aneura | 119 | 29 | | | | 4 | 17.2 | 1.16 | | 7.04 | 49.44 | | Polyarthra | | | | 1 | | 6 | 14.4 | .11 | | 11.56 | 47.46 | | Noltholea
Hexarthra | 29
4 | 12
4 | | | | 8 | | | | | | | Daphnia | 48 | 1.6 | | | | 9.5 | 12.2 | 0 | | 15.74 | 57.06 | | Diaptomus | 14 | 1.6 | | | | | | | | | | | Cyclops | 24 | 2.4 | | | | | | | | | i | | Nauplii | 68 | 10 | | | ļ | , | | | | | | | Melosira | 10,146 | 2,986 | | | | | | | | | | | Fragillaria | 3,072 | 3.566 | | | 1 | | | | | | | | Asterionella | 1,962 | 4,232 | | | | | | ľ | l | | | | Anabena | 1,002 | 1 |
| | | | | | | | | | Clathrocyctis | 170 | 64 | | | | | | | | | | | Oscillatoria | | | | | | | | | | 1 | | | Lyngbya | 998 | 298 | | | 1 | | | | | | | TABLE 47. LAKE: LOON Date: 7/26/29 | | | Plank | ton | | | | | Di | ssolved | Carri | | | | |-------------|---|----------------------------------|------|-------|-------|-----|---|------|---------|-------|-----|------|------| | | Species | 0-4 | 5-10 | 10-15 | 15-20 | | D | T | 0 | _ | | | | | ı | Ceratium | 823 | | | | | | | | 1 % | C |)2 | Сь | | - / | Dinobryum | 17 | | | | | s | 26.7 | 4.76 | 1 | 1.9 | 8 2 | 4.10 | | | Aneura | 174 | 1 1 | - 1 | | | 2 | 25.6 | 4.42 | | 1.1 | 6 2 | 3.86 | | | Polyarthra
Triarthra | 17 | | | | | 4 | 21.4 | 1.99 | | 3.9 | 2 25 | .82 | | | Hexarthra | 12 | 1 1 | | | - 1 | | | | l | 1 | | | | | Daphnia | 30 | | - 1 | | - 1 | | | | | | 1 | | | F
A
A | Diaptomus Cyclops Nauplii Melosira Yagillaria sterionella nabena lathrocyctis | 11
3.2
47
4
8
221 | | | | | | | - | | | | | | | Ingbya | #### TABLE 48. LAKE: LONG LAKE (N. Basin) Date: 8/20/30 Plankton | | | | | | | Dis | solved (| <i>i</i> ases | | | |--------------------------------------|-------|-------|-------|-------|-----|------|----------|---------------|-----------------|------| | Species | 0-5 | 5-10 | 10-18 | 15-20 | D | т | 0 | % | CO ₂ | Сь | | Ceratium | 51 | 34 | 8 | | s | 23.8 | 4.43 | | -1.0 | 23,2 | | Dinobryum | 209 | 4,364 | 665 | | 2 | 23.8 | 4.51 | | -2.4 | 23.2 | | Aneura | 8 | 4 | | | 4 | 23.5 | 4.43 | | -2.4 | 23,2 | | Polyarthra
Hexarthra
Noltholea | 8 8 | 4.2 | | | 6 | 21.3 | 4.85 | | -1.4 | 23.2 | | | | | 4 | | 8 | 13.3 | 1.95 | | .4 | 30.4 | | Daphnia | 6.4 | 19 | 2.4 | | 10 | 10.5 | .35 | | 1.2 | 29.8 | | | | | | | 12 | 10 | . 17 | | 1.0 | 30.8 | | Diaptomus | 37 | 12 | | | 15 | 9.4 | .05 | | .6 | 30.8 | | Cyclops | 15 | 52 | 6.4 | İ | 18 | 8.8 | .05 | | 1.4 | 32.2 | | Nauplii | 55 | 115 | 2.4 | | | | | | *** | 02.2 | | Melosira | 4 | 64 | 17 | | | | | | | | | Fragillaria | 4 | 4 | | ĺ | 1 1 | l | - 1 | 1 | [| | | Asterionella | | | | | | l | ŀ | | 1 | | | Anabena | 170 | 81 | 8 | | | | 1 | | | ĺ | | Clathrocyctis | 4,535 | 2,905 | 401 | | | - 1 | 1 | | - 1 | ĺ | | Oscillatoria | 89 | 76 | 25 | | 1 1 | ŀ | | - 1 | - 1 | | | Lyngbya | 341 | 746 | 17 | | | ľ | | | | i | TABLE 49. LAKE: LONG LAKE (S. Basin) (LaGrange) Date: 8/20/30 | | Pis | nkton | | | | | | Di | ssolved | Gases | | | |-------------------------|-------|-------|--------|--------|-----|----|--------|---------|---------|-------|------|-------| | Species | 0- | 5 5-: | 10 10- | 15 15- | 21 | D | Т | 0 | % | CO2 | СЬ | | | Ceratium | 140 | 42 | 8. | 5 2 | | 8 | 23.8 | 5.03 | | | | pH | | Dinobryum | 311 | 759 | 657 | 106 | | 2 | 1 | 1 | | -1.6 | 23.8 | 8.3 | | Aneura | | 8. | 5 | 1 | | 4 | | 1 01.10 | | 1.6 | 22.6 | 8.3 | | Polyarthra
Asplanena | | | | 1 | | 1 | 1 -0.0 | 0.10 | | -1.2 | 23.2 | 8.3 | | Noltholea | 4 | | - | 4 | | 6 | 72.0 | 4.51 | | -1.0 | 23.6 | 8.3 | | Daphnia | 8 | 1 . | 8 12 | | . | 8 | 12.7 | 1.53 | | 1.0 | 29.6 | 7.5 | | Leptodera | | - 1 | 12 | 1.0 | , [| 10 | 10.5 | .31 | | 1.0 | 29.8 | 7.1 | | 1 | - " | | | | | 12 | 10 | .34 | - 1 | 2.0 | 29.8 | 7.1 | | Diaptomus | 16 | 4 | 1.6 | .8 | | 15 | 9.0 | .08 | | 2.0 | 30.2 | 7.1 | | Cyclops | 24 | 18 | 12 | 1.6 | 1 | 1 | | | 1 | 1 | | | | Nauplii | 98 | 55 | 23 | 1.6 | | | | | - 1 | | | | | Melosira | | | | 1 | 1 1 | 22 | 8.8 | .005 | 1 | 2.2 | 31.2 | 7.1 | | 1 | 8 | 21 | 17 | 1 | Ш | - | | | | | 01.2 | . 7.1 | | Fragillaria | 38 | 12 | 85 | 4 | П | 1 | | | | - 1 | | i | | Asterionella | 1 | 1 | | | П | 1 | - 1 | | | 1 | ı | i | | Anabena | 234 | 55 | 12 | | 1 1 | | | - 1 | | } | | | | Clathrocyctis | 3,549 | 1,267 | 652 | 251 | | | - | - 1 | | | 1. | | | Oscillatoria | 123 | 38 | 34 | 25 | | | - 1 | - 1 | - 1 | | - 1. | | | Lyngbya | 311 | 499 | 136 | 25 | | | | | | | | . | #### TABLE 50. #### LAKE: OLIVER (LaGrange) Date: 9/6/30 #### Plankton | Species | 0-5 | 5-10 | 10-15 | 15-25 | D | т | 0 | % | CO ₂ | Cb | рH | |-------------------------|-----------|-------|-------|----------|----|------|------|-----|-----------------|------|-------| | Ceratium | 1,083 | 1,024 | 251 | 51 | s | 25 | 5.53 | | 6 | 32.8 | 8.2 | | Dinobryum | 21 | | | | 2 | 22.2 | 6.10 | 101 | -3.0 | 33.6 | 8.2 | | Aneura
Hexarthra | 76
8.5 | 34 | | 21 | 4 | 22.2 | 6.07 | 100 | -3.2 | 33.8 | 8.2 | | Polyarthra
Noltholca | 51
4.2 | 4.2 | 2.4 | 12
12 | 6 | 21.2 | 5.09 | | 2.0 | 33.8 | . 8.2 | | Asplanena | 4.2 | 4.2 | 2.4 | 12 | 8 | 15.5 | 5.33 | - | 0 | 37.4 | 7.9 | | Daphnia | 3.2 | 3.2 | .8 | 8.8 | 10 | 10.5 | 4.51 | | .6 | 40.4 | 7.6 | | Bosmina
Holopedium | 4
3.2 | | | | 12 | 8.8 | 3.84 | | 1.2 | 39.4 | 7.6 | | Diaptomus | 9.6 | 5.6 | 8.8 | 4.8 | 15 | 8.3 | 2.81 | | 1.0 | 40.4 | 7.5 | | Cyclops | 5.6 | 17 | 23 | 24 | | | | | | | | | Nauplii | 24 | 16 | 28 | 76 | 20 | 7.7 | 1.03 | | 1.0 | 41.8 | 7.5 | | Melosira | 17 | 162 | 311 | 678 | 25 | 7.7 | .21 | | 2.2 | 41.8 | 7.5 | | Fragillaria | 234 | 128 | 106 | 64 | 20 | 1.1 | .21 | | 2.2 | 41.0 | 7.3 | | Asterionella | 4 | 21 . | | | | | | | | | . | | Anabena | 4 | 34 | 128 | | | | | | | | | | Clathrocyctis | 260 | 371 | 166 | 140 | | | | | | | | | Oscillatoria | 85 | 38 | 64 | 25 | | | | | | | | | Lyngbya | | | | | | | | | | | | #### TABLE 51. LAKE: LOWER OTTER Date: 7/18/29 #### Plankton | 6 . | | | | | | , | 151 | ssorved | Gases | | | |---------------|-------|-------|-------|-------|-----|-----|------|---------|-------|------|-------| | Species | 0-5 | 5-12 | 10-15 | 15-2) | | D | Т | 0 | % | CO2 | Cb | | Ceratium | 68 | 16 | | ĺ | | s | 24.8 | 6.15 | 106 | | | | Dinobryum | 162 | | | | | 2 | 24.8 | 1 | | .0 | 42.00 | | Aneura | 12.8 | : | | | | 4 | Į. | 6.10 | 106 | .0 | 42.00 | | Polyarthra | | ł | į | ļ | | | 21.7 | 5.78 | | .0 | 41.52 | | Noltholca | .8 | 1 | | | | 6 | 14.7 | 4.11 | | 2.20 | 40.02 | | Daphnia | 8 | 3.2 | ĺ | | - 1 | 8 | 10.9 | 3.36 | | 3.56 | 39.54 | | | 1 ° | 3.2 | | i | | 10 | 10.6 | . 57 | | 7.52 | 39.54 | | | | 1 | | | - 1 | 12 | 10 | .11 | | 6.92 | 40.02 | | Diaptomus | 4.8 | 1 1 | - | | - | | | | | - 1 | | | Cyclops | 19.2 | 9.6 | | - 1 | - 1 | 1 | | | | 1 | | | Nauplii | 19.2 | 17.6 | | | | | | | | | | | Melosira | | 76 | | | | | | | | | | | Fragillaria | 2,606 | 3,140 | | - | | 1 | | | | | | | Asterionella | | 40 | | | | 1 | | | | - 1 | | | Anabena | | 20 | | | | - 1 | - 1 | | | | | | Clathrocyctis | 904 | 1,975 | | | İ | - 1 | | | | İ | ł | | Oscillatoria | | 294 | | | | | İ | | | | | | yngbya | " | 201 | | | | | | | - | İ | | #### TABLE 52. LAKE: PLEASANT Date: 7/9/29 #### Plankton | Species | 0-5 | 5-10 | 10-13 | 15-20 | | D | Т | 0 | % | CO2 | Сь | |---|-------------|----------|-------------------|-------|---|----------|------|-----|---|------|-------| | | | | | | ĺ | s | 23.9 | 5.7 | | 0 | 24.46 | | Ceratium | 9,464 | 38,451 | 18,278 | | İ | 2 | 23.6 | 5.6 | | 0 | 24.22 | | Dinobryum | 396 | 64 | 196 | | Ì | 4 | 23.3 | 5.6 | ł | 0 | 23.72 | | Aneura | 12.8 | 25 | | | ļ | 6 | 20 | 6.1 | ļ | 0 | 24.42 | | Polyarthra
Hexarthra | 4 | 8 | 4 | | | 8 | 15.6 | 6.3 | | 1.46 | 28.36 | | | | | | | | 10 | 12.8 | 2.9 | | 4.64 | 28.12 | | Daphnia | 8 | 4.8 | 2.4 | | | 12
13 | 11.7 | 67 | | 5.12 | 29.84 | | | | | | | | 15 | | | | | | | Diaptomus | 12 | 4 | | | | | | | | | | | Cyclops | 1.6 | .8 | | | | | | | | | | | Nauplii | 4 | 25 | 8.5 | | | 20 | | | | | | | Corethra | 1 | 4 | .8 | | | | | | | | | | Melosira | 200 | 294 | 110 | | | 25 | | | | | | | Fragillaria
Tabellaria
Asterionella | 51
1,506 | 332
4 | $^{17}_{631}_{4}$ | | | 30 | | | | | | | Anabena | 524 | 38 | 4 | | | 30 | | | | | | | Clathrocyctis | 277 | 128 | 251 | | | | | | | | | | Oscillatoria | 38 | 8 | 8 | | | | | 1 | | 1 | | | Lyngbya | 42 | 64 | | | | İ | | | | | | | | 1 | 1 | 1 | | 1 | · | | | | | | # TABLE 53. LAKE: PLEASANT LAKE Date: 7/23/29 Plankton | | | | | | | | Di | ssolved | Gases | | | |--------------------------|-------------------|---------------|-------|-------|-----|-----|------|---------|----------|------|-------| | Species | 0-5 | 5-10 | 10-15 | 15-20 | | D | Т | 0 | % | CO2 | Сь | | Ceratium | 136 | 21. | | | | s | 25.6 | 5.57 | <u> </u> | 0 | 24.96 | | Dinobryum
Aneura | - | | | | | 2 | 25 | 5.42 | | 0 | 25.06 | | Polyarthra | - 1 | | | | | 4 | 23 | 5.74 | | 0 | 24.38 | | Noltholes | 1 | | | | ! | 6 | 22 | 4.60 | [| 1.80 | 24.50 | | Hexarthra
Daphnia | 1.6
12.8
25 | 4
4
2.4 | | | - 1 | 8 | 17.2 | .37 | | 4.98 | 27.24 | | | 25 | 2.4 | | | | 10 | 14.4 | .09 | | 4.54 | 28.60 | | Diaptomus | 32 | | | | | | | | | | | | Cyclops | 1 | .8 | | 1 | | | | | | | | | Nauplii | 4 | 2:4 | 1 | | | i | | [| - 1 | | | | | 38 | 29 | | | | | - 1 | 1 | | 1 | | | Melosira | 1 | 12 | | | | | | | 1 | - | | | Fragillaria | 81 | 25 | | | | | | | | | | | Asterionella | | 12 | | | | - 1 | | - 1 | [| | | | Anabena
Clathrocyctis | 1,472 | 247 | | | | | | | | | | | Oscillatoria | 17 | 12 | | | | | - 1. | 1 | - 1 | | | | Lyngbya | 17 | 42 | | | | | | | - 1 | į | | TABLE 54. LAKE: PRETTY Date: 8/18/30 #### Plankton | Species | 0-5 | 5-10 | 10-15 | 15-20 | D | т | 0 | % | CO2 | | |-------------------------|--------------|------------|-------|----------|------|------|------|---|------|----| | Ceratium | 2,948 | 102 | 72 | 128 | s | 23.8 | 5.18 | | -2.4 | | | Dinobryum | 1,966
106 | 42
68 | 25 | 34
25 | 2 | 23.8 | 5.24 | | -1.4 | : | | Aneura
Hexarthra | 264
17 | 12
12.8 | 4 4.2 | 5.6 | 4 | 23.3 | 5.16 | | -1.6 | | | Polyarthra
Noltholca | 8.5 | 1.6 | 8.5 | 8 | 6 | 21.8 | 4.64 | | 8 | | | Asplanena | 21 | 8.5 | 8.5 | l ° | 8 . | 14.7 | 1.62 | | .4 | | | Daphnia | 12 - | 3.2 | 1.6 | ļ | 10 | 10 | .85 | | 1.0 | | | | | | | | 12 | 9.4 | .45 | | 1.0 | | | | | | | | 15 | 8.8 | .35 | | 1.0 | | | Diaptomus | 44 | 4 | 2.4 | .8 | 10 | 0.0 | .00 | | 1.0 | | |
Cyclops | 18 | 12 | 3.2 | 1.6 | | | | | | l | | Nauplii . | 332 | 50 | 10.4 | 4 | 20 | 8.3 | .03 | | 1.0 | | | Melosira | . 12 | 29 | 21 | 17 | 24.5 | 8.3 | .04 | | 1.0 | ١. | | Fragillaria | 4,083 | 334 | 162 | 98 | | | | | | | | Asterionella | 4 | 4 | | 4.2 | | | | | 1 | | | Anabena | 42 | | | 4 | | | | | | | | Clathrocyctis | 563 | 742 | 115 | 102 | | | 1 | | | | | Oscillatoria | 132 | 29 | 12 | 4 | | | | | | | | Lyngbya | 25 | 1,036 | 55 | 81 | | | | | | 1 | #### TABLE 55. LAKE: ROUND Date: 8/12/30 | | PI | ankton | | | | | - D | issolved | Gases | | | |------------------------|----------|--------|---------|-------|-----|-----|------|----------|-------|-----------------|------| | Species | 0-5 | 5-1 | 0 10-15 | 15-20 | | D | Т | 0 | % | CO ₂ | Ch | | Ceratium | 243 | 46 | 4.2 | | | s | 25 | - | | - | | | Dinobryum | 25. | 6 | | | | 2 | 1 | 5.05 | 0 | -1.0 | 22.4 | | Aneura | 17 | 4. | 2 | | | 4 | 24.4 | | | -1.0 | 21. | | Polyarthra | - | - } | | | 1 | | 23.6 | 5.03 | | -1.4 | 21. | | Asplanena
Hexarthra | 21
42 | 12.1 | 3 | | - 1 | 6 | 20.5 | 4.90 | | 4 | 21.5 | | Daphnia | 7.: | - 1 | 1 1 | | - 1 | 8 | 13.8 | .24 | | 3.0 | 28.8 | | Bosmina | | .8 | 1 | | - 1 | 10 | 10.5 | .335 | - | 3.0 | 28.8 | | | | " | | | İ | | | | | İ | | | Diaptomus | 14.4 | . | .8 | 1 | | | | | | - 1 | | | Cyclops | 20.8 | 3.2 | 1 1 | - 1 | | 18 | | | j | - 1 | | | Nauplii | 68.2 | 25.6 | " | | | 18 | 9.4 | .0 | | 3.0 | 31.2 | | | | | 1 1 | | | | ı | | | - 1 | | | Melosira | 38.4 | 38.4 | 64 | - 1 | | - 1 | | | | | | | Fragillaria | 2,517 | 409 | 132 | | | - 1 | | | i | | | | Asterionella | | 4.2 | 1 1 | | | - 1 | į | 1 | | | | | Anabena | 755 | 55 | 17 | | | - 1 | | | ł | | | | Clathrocyctis | 729 | 554 | 204 | | | | | | | 1 | | | Oscillatoria | 98 | 25 | 85 | | | 1 | | | | - 1 | | | yngbya | 17,937 | 742 | 593 | | - 1 | - 1 | | 1 | - | | | #### TABLE 56. LAKE: SHRINER Date: 8/15/30 #### Plankton | Species | 0-5 | 5-10 | 10-15 | 15-20 | D | Т | 0 | °c | CO ₂ | Ct | |-------------------------|-----|---------|-------|-------|----|------|------|----|-----------------|------| | Ceratium | 4 | 12 | 1 | | s | 26.6 | 5.25 | | -1.4 | 23 . | | Dinobryum | 17 | 25 | 4 | | 2 | 25.3 | 5.32 | | -1.0 | 24. | | Aneura | | 2,201 | 42 | | 4 | 25 | 5.33 | İ | -1.4 | 24 | | Noltholea
Polyarthra | - | 38 | .8 | | 6 | 19.6 | 5.29 | | -1.2 | 23 | | Triarthra
Hexarthra | 17 | | 2.4 | | 8 | 12.7 | 6.63 | | 0 | 26. | | Asplanena
Daphnia | 14 | 4
24 | 4.8 | | 10 | 10.5 | 2.39 | | 1.0 | 26. | | | | | | | 12 | 7.77 | 1.23 | | 2 | 26. | | Diaptomus | 6.4 | 52 | 8 | | 15 | 8.8 | .14 | | 2 | 27. | | Cyclops | 1.6 | 19 | 2.4 | | 18 | 8.6 | .06 | | 3.0 | 28. | | Nauplii | 34 | 25 | 10 | | | | | | | | | Corethra | | 4 | | | | | | | | | | Melosira | | 25 | 25 | | | | | | | | | Fragillaria | 418 | 209 | 46 | | | | | | | | | Asterionella | | | | | | | | | l | | | Anabena | 132 | 277 | 34 | | | | | | | | | Clathrocyctis | 341 | 725 | 358 | | | | | | | | | Oscillatoria | 8 | | 405 | | | | | | | | | Lyngbya | | 2,926 | 59 | | | | | | | | # TABLE 57. LAKE: SILVER Date: 7/24/29 Plankton | | | | | | , | , | | | Cases | | | |------------------------|---------|------|-------|-------|-----|----------|------|------|-------|-----------------|-------| | Species | 0-5 | 5-11 | 10-15 | 15-20 | | D | Т | 0 | % | CO ₂ | Сь | | Ceratium | 315 | 55 | | | | S | 25 | 5.15 | | 0 | | | Dinobryum | 264 | 64 | | | | 2 | 24.7 | 5.06 | | 0 | 26.22 | | Aneura | 21 | 1 | | | | 4 | 23.1 | | | | 26.54 | | Polyarthra | | | | | - 1 | | 1 | 4.94 | | 0 | 26.78 | | Noltholea
Hexarthra | 25
8 | 1 1 | | | - 1 | 6 | 17.7 | .22 | | 4.88 | 31.32 | | Asplanena
Daphnia | 12 | 4 | | | | 8 | 13.9 | .10 | | 6.34 | 31.32 | | | 12 | * | | | | 10
11 | 11.7 | .0 | | 8.16 | 36.08 | | Diaptomus | 9.6 | 1.6 | | | | | | | | | | | Cyclops | 4 | .8 | - 1 | İ | | | | 1 | | 1 | | | Nauplii | 47 | 4.2 | | | | | | | İ | | | | Melosira | 140 | 217 | | | | | | | Ì | | | | Fragillaria | 102 | 17 | | | | j | | | | 1 | | | Asterionella . | 704 | 119 | l | 1 | . | | - [| 1 | 1 | 1 | | | Anabena | 8 | 1 | | İ | - | ĺ | | | - 1 | | | | Clathrocyctis | 1 | 341 | | | - | | | | . | | | | Oscillatoria - | 140 | 34 | | | | | - 1 | | | | | | yngbya | 17 | 320 | | | | | | | ł | | | TABLE 58. LAKE: SNOW, Station O. Date: 6/22/29 | Species | 0-5 | 5-10 | 10-15 | 15-20 | | D | Т | 0 | % | CO2 | Cb | |---------------------------|----------|------|------------|-------|----|----|------|-----|-------|------|-------| | Ceratium | 640 | 55 | 42 | 38 | | s | 24.7 | 5.6 | | .74 | 36.92 | | Dinobryum | 38 | 8.5 | 4 | 4.2 | | 2 | 24.2 | 5.6 | i | .74 | 36.40 | | Aneura
Hexarthra | 72
21 | 4.2 | 12 | 17 | İ | 4 | 19.4 | 6.4 | 100.7 | .60 | 38.42 | | Polyarthra
Noltholea | 12 | 17 | 17 | 4.2 | | 6 | 15.6 | 5.5 | | .50 | 38.42 | | Asplanena | 12 | 4.2 | 4 | 12.8 | | 8 | 13.7 | 4.9 | | .74 | 38.42 | | Daphnia | 10 | 4 | 2.4 | 1.6 | | 10 | 12.2 | 4.1 | | 1.50 | 38.92 | | | | | | | | 12 | 11.1 | 3.7 | | 2.26 | 38.66 | | | | | ĺ | 1 | | 15 | 10.6 | 3.1 | | 2.62 | 38.92 | | Diaptomus | 13 | 22 | 5.6 | 1.6 | | | | | ļ | | | | Cyclops | 37 | 3.2 | 1.6 | .8 | | | | | [| | | | Nauplii | 44 | 25 | 25 | 10 | ١. | 20 | 8.3 | .15 | | 3.02 | 37.92 | | | | | | | | | | | | | | | Melosira | 529 | 469 | 725 | 1,821 | | 25 | 7.2 | 0 | 1 | 6.66 | 40.44 | | Fragillaria
Tabellaria | 733 | 297 | 460
110 | 384 | | 25 | 1.2 | U | | 0.00 | 40.44 | | Asterionella | 85 | 98 | 34 | 140 | | | | | | ĺ | ĺ | | Anabena | 17 | 8 | | | | | | | | | | | Clathrocyctis | 2,444 | 439 | 640 | 145 | | | | | | | | | Oscillatoria | 157 | 17 | | 12 | | | | | | | | | Lyngbya | 315 | 34 | 59 | 46 | | | | | | | | # TABLE 59. LAKE: SNOW, Station Q. Date: 7/3/29 Plankton | | | | | | | | Di | ssolved | Gases | | | | |-----------------------|------------|------|-------|-------|-----|------|------|---------|-------|------|--------|---| | Species | 0-18 | 5-10 | 10-15 | 15-20 | | D | Т | 0 | 96 | CO: | Cb | - | | Ceratium | 382 | | | | | s | | ļ | | | | - | | Dinobryum | . 192 | | | | | l. " | 22.2 | 6.04 | i | 75 | 35.64 | | | Aneura | 31 | | | | | 2 | 22.2 | 6.07 | | 50 | 36.80 | | | Polyarthra | 15 | | | - 1 | | 4 | 20.9 | 6.0 | | 50 | 37.41 | 1 | | Noltholea | 5 | | 1 | 1 | | 6 | 15.6 | 5.4 | | 1.01 | 37.92 | l | | Daphnia | 3.9 | | - 1 | i | j | 8 | 13.7 | 4.3 | | 3.03 | 38.67 | l | | 1 | 1 1 | | - 1 | | | 10 | 12.2 | 3.5 | | 3.28 | 39.43 | ĺ | | | 1 1 | | | | | 12 | 11.1 | 3.3 | | 3.53 | 38.67 | ĺ | | Diaptomus | 13.9 | | | | - 1 | 15 | 10.6 | 2.9 | į | 4.04 | -39,43 | | | Cyclops | 9.7 | 1 | - | - 1 | | 18 | | 1 | - 1 | 1.01 | 00.40 | | | Nauplii | 30.8 | | | | | 18 | 10.4 | 1.8 | | 5.50 | 39.43 | | | 1 | | | ł | | - [| | - | 1 | | | | | | Melosira | 168 | | | - 1 | | - 1 | - 1 | | | 1 | | | | Fragillaria | 925 | | | - 1 | - | - 1 | - 1 | | 1 | | 1 | | | Asterionella | 53 | | | | - | - 1 | ł | | ł | | | | | Anabena | 7.8 | | | | | 1 | - 1 | | | 1. | - 1 | | | Clathrocyctis | 132 | | - 1 | | | - | | | | - [| | | | Oscillatoria | 66 | | | | | | | - 1 | | 1 | - 1 | | | Lyngbya
Tabellaria | 218
5.6 | # TABLE 60. # LAKE: SNOW, Station S. Date: 7/3/29 ### Plankton | Species | 0-10 | 5-10 | 10-15 | 15-20 | | D | Т | 0 | % | CO2 | Cb | |---------------|------|------|-------|-------|---|----|------|------|---|-------------|-------| | Ceratium | 324 | | | | | s | 21.7 | 6.1 | | 5 | 36.15 | | Dinobryum | 25 | | | | | 2 | 21.7 | 6.1 | | —.75 | 36.4 | | Aneura | 25 | | | | | 4 | 20.9 | 6.1 | | 25 | 36.15 | | Polyarthra | 61 | | | | | 6 | 16.1 | 4.8 | | .75 | 38.42 | | Noltholea | 8.5 | | | İ | | 8 | 14.2 | 2.5 | | 3.28 | 38.93 | | Daphnia | 5.6 | | | | | 10 | 12.8 | 1.03 | | 5.30 | 39.94 | | | | | | | | | | | i | i | | | Diaptomus | 13.2 | | | | | | | | | | | | Cyclops | 8 | | | | | | | | | | | | Nauplii | 31.6 | | | | ļ | | | | | | ļ | | Naupin | 01.0 | | i | | | | | | ļ | | | | Melosira | 115 | i | | | | | | | | ļ | İ | | Fragillaria | 961 | | ļ | | | | | | | | l | | Asterionella | 121 | | ĺ | | | | | ĺ | l | l | | | Anabena | 8.5 | | İ | | | | | | | | | | Clathrocyctis | 140 | | 1 | | į | ļ | | ì | l | | | | ()scillatoria | 113 | | | - | İ | | | | | | | | Lyngbya | 63 | | | | | ĺ | | 1 | 1 | 1 | | TABLE 61. LAKE: SNOW, Station P. Date: 7/4/29 | | | T | | | | | Di | ssolved | Gases | | | |------------------------|------------|------|-------|-------|-----|-----|------|---------|-------|-------|-------| | Species | 0-15 | 5-10 | 10-15 | 15-20 | | D | T | 0 | 76 | CO2 | Сь | | Ceratium | 238 | | | | | | | | | | | | Dinobryum | 133 | | | | | s | 21.4 | 6.0 | | -1.01 | 35.89 | | Aneura | 186 | 1 | | | | 2 | 21.1 | 6.0 | | 50 | 36.15 | | Polyarthra | 14 | | 1 | | İ | 4 | 20 | 5.8 | | 5 | 36.90 | | Triarthra
Noltholca | 7.9
1.3 | | 1 | | | 6 | 15.8 | 4.8 | | 1.51 | 36.65 | | Daphnia | 2,2 | - 1 | | | | 8 | 14.2 | 2.9 | | 2.78 | 37.92 | | | | - 1 | 1 | - | | 10 | 12.8 | 2.1 | 1 | 1 | 37.66 | | | | | - 1 | | | 12 | 11.4 | .89 | - 1 | - 1 | 37.66 | | Diaptomus | 17.5 | | | - 1 | | 15 | 10,6 | . 09 | | 7.50 | | | Cyclops | 8.7 | | | - 1 | | 1 | | 1 | - 1 | 7.58 | 38.42 | | Naupli. | 26.2 | | | | | | | | - 1 | - 1 | | | | | | | | | | | | | | | | Melosira | 56 | - 1 | - 1 | | - 1 | - 1 | | - 1 | | İ | | | Fragillaria | 754 | | | | | - 1 | | | | | | | Asterionella | 59 | | | | | 1 | | | | | | | Anabena | 1 1 | - 1 | | | | | | | ı | | l | | Clathrocyctis | 159 | | | | - | | | | - | | 1 | | Oscillatoria | 50 | | | | | | | | ĺ | | | | yngbya | 186 | | | | | | i | | | | i | TABLE 62. LAKE: SNOW, Station O. Date: 8/6/29 | | FIRMKO | | | | | | | | | | | |-------------------------|--------|------|-------|-------|---|----|------|------|---|------|-------| | Species | 0-5 | 5-10 | 10-15 | 15-20 | | D | т | 0 | % | CO2 | Сь | | Ceratium | 840 | 106 | 51 | 34 | İ | 8 | 22 | 5.50 | | | 36.34 | | Dinobryum | 516 | 12 | 8 | 12 | - | 2 | 22 | 5.49 | | | 35.34 | | Aneura | 76 | 17 | 38 | | İ | 4 | 22 | 5.43 | | | 35.34 | |
Asplanena
Polyarthra | | ١. | 4 | | | 6 | 18.2 | 3.69 | | 3.48 | 36.34 | | Noltholea
Hexarthra | 4.2 | 4 | | | | 8 | 13.7 | 2.69 | | 3.98 | 38.34 | | Daphnia | | | | 1.6 | | 10 | 12 | 2.12 | | 6.96 | 37.58 | | · | | | | | | 12 | 11 | 1.99 | | 5.22 | 38.84 | | | | | | | | 15 | 10.6 | 1.68 | | 5.46 | 39.34 | | Diaptomus | 5.6 | 4 | 3.2 | 3.2 | | 20 | 10.0 | | | | | | Cyclops | 12.8 | 9.6 | 1.6 | 1.6 | | | | | i | ŀ | | | Nauplii | 16 | 8 | 1.6 | 5.6 | | 20 | 8.6 | .97 | | 6.22 | 38.84 | | Corethra | 42 | | 1.6 | | | | | | | | | | Melosira | 183 | 213 | 72 | 38 | | 25 | 7.5 | .06 | | 7.70 | 42.42 | | Fragillaria | 435 | 226 | 157 | 320 | İ | 20 | 1 | '** | - | | | | Asterionella | 4 | 8 | 8 | | | | | | - | | | | Anabena | 25 | | | | | | 1 | | ļ | | | | Clathrocyctis | 686 | 297 | 401 | 234 | | | | | | | | | Oscillatoria | 115 | 29 | 42 | 38 | | | | | | | | | Lyngbya | 64 | 149 | 12 | 8 | • | | İ | | | | | | | | | | | | | | | | | | TABLE 63. LAKE: SNOW LAKE Date: 8/14/30 | | | | | | | | Б | issolved | Gases | | | |---------------|-------|-------|--------|-----------|-----|-----|------|----------|-------|-----------------|------| | Species | 0-5 | 5-1 | 0 10-1 | 5 15-20 | | D | Т | 0 | 5% | CO ₂ | Cb | | Ceratium | 832 | 80 | 25 | 110 | | s | 23.8 | | | | | | Dinobryum | 119 | | 4 | 21 | ١., | | 1 - | 0.01 | | 2.2 | 36.€ | | Aneura | 68 | | 8.5 | 1 - | | 2 | 23.3 | | | -2.2 | 36.6 | | Polyarthra | | | 0.0 | | П | 4 | 23.3 | 5.56 | | -1.4 | 35.8 | | | ĺ | 1 | | | 1 1 | 6 | 20 | 3.87 | | -1.0 | 35.8 | | Daphnia | 4.8 | 3,2 | . [| 1 | | 8 | 12.2 | 2.34 | | 1.0 | 42.0 | | | 1.0 | 3.2 | | 17 | ĺ | 10 | 9.4 | 2.55 | | 1.0 | 42.4 | | | | | | | - 1 | 12 | 8.8 | 1.50 | - 1 | 1.0 | 42.4 | | Diaptomus | 8.8 | 88 | 3.2 | 6.4 | | 15 | 8.3 | 1.31 | | 1.0 | | | Cyclops | 28 | 18.4 | 6.4 | 20 | | | | | | 1.0 | 42.4 | | Nauplii | `16 | 6.4 | 4 | 8.8 | - 1 | 1 | | | | - 1 | | | | | | 1 | 8.8 | - 1 | 20 | 6.8 | 1.16 | | 1.0 | 42.4 | | Melosira | 46 | 64 | 146 | 123 | - 1 | | | | | | | | Fragillaria | 115 | 1 | 29 | 46 | | 24 | 6.3 | .05 | | 4.0 | 55.4 | | Asterionella | 1 | | | 10 | | i | - 1 | 1 | | | | | Anabena | | | | 1 | | | | | | | | | Clathrocyctis | 5,824 | 1,191 | 824 | | | | - 1 | | | į | | | Oscillatoria | | 128 | - 1 | .467 | | | | | | | | | yngbya | | 120 | 16 | 76 | | - 1 | | | | | | ## TABLE 64. ## LAKE: SNOW LAKE Date: 8/22/30 Plankton | Species | 0-5 | 5-10 | 10-15 | 15-20 | . | D | Т | 0 | % | CO2 | Cb | |--------------------------|--------|------------|----------|-------|---|------|------|------|---|------|-------| | Ceratium | 1,877 | 337 | 127 | 38 | | 8 | 22.2 | 5.03 | | .60 | 13.80 | | Acinetaetis
Dinobryum | 1,838 | 213
349 | 81
89 | 17 | | 2 | 22.2 | 5.69 | | 2.4 | 34.8 | | Aneura | 128 | 38 | 17 | 12 | | 4 | 22 | 5.99 | | →2.0 | 35.2 | | Triarthra
Polyarthra | 179 | 25
68 | 34 | | | 6 | 21.2 | 5.92 | | -1.4 | 35.4 | | Asplanena
Noltholea | 12 | | | 2 | | 8 | 12.7 | 3.00 | | 2.0 | 41.6 | | Daphnia | | 2.4 | 3.2 | 8 | | 10 | 9.8 | 2.51 | | 1.4 | 42.0 | | | | | | | | 12 | 8.9 | 1.47 | | 2.0 | 42.2 | | | | | | | | 15 | 8.3 | 1.23 | | 1.4 | 42.0 | | Diaptomus | | 9.6 | 4.8 | 8.8 | | | •,- | 1 | | | | | Cyclops | 23 | 32 | 5.6 | 4 | | | | | | | | | Nauplii | 36 | 14.4 | 4.8 | 17 | | 20 | 7.2 | 1.11 | | 2.4 | 41.4 | | Corethra | | İ | | .8 | ļ | | | - | | | | | Melosira | 115 | 64 | 162 | 115 | | 24.5 | 6.6 | .09 | | 3.0 | 44.0 | | Fragillaria | 366 | 123 | 123 | 25 | | | ĺ | | | | | | Asterionella | | | | | | | | | | | | | Anabena | 46 | 89 | | 12 | | | | | | | , | | Clathrocyctis | 17,412 | 3,468 | 806 | 302 | | | | | | | | | Oscillatoria | 456 | 221 | 93 | 162 | | | | | | | | | Lyngbya | | 75 | 119 | 1 | | | | | | | | # TABLE 65. LAKE: SNOW LAKE Date: 8/30/30 Plankton į | 1 | | ankton | | | | | | | D | issolvec | l Gases | | | |---------------|-----------|--------|------|------|------|-----|------|------|------|----------|---------|--------|-----| | Species | 0 | -5 5- | 10 1 | 0-15 | 15-2 | 4 | D | Т | 1 0 | 1 % | | | T | | Ceratium | 341 | 345 | 6 | 4 | 21 | - | s | - | | | CO | Сь | pH | | Dinobryum | 180 | 196 | 13: | 2 | 21 | | 2 | | | 100 | -1.4 | 100.0 | 8.3 | | Aneura | 42 | 25 | 4 | 1 | | | 4 | 1 | 1 | 108 | -2.2 | 1 00.2 | | | Polyarthra | 52 | 46 | 8 | 3.5 | | 1 | 6 | 20.6 | 0.01 | | -2.4 | 34.4 | 1 | | - | - 1 | | | - 1 | | | 8 | 12.2 | 2.50 | | 0 | 45.8 | | | Daphnia | | 2. | 4 6 | . | | | 10 | 9.5 | 1.60 | | 1.4 | 44.0 | 1 | | · | | | | | | П | 12 | 8.8 | 1.10 | | 2.0 | 41.6 | | | | | | 1. | | | | | | | | 1.4 | 42.6 | | | Diaptomus | 10 | 6.4 | 8 | | 1.6 | | 15 | 8.3 | .95 | - 1 | 1.4 | 43.8 | | | Cyclops | 36 | 16 | 4 | | | | | | | | | 10.0 | | | Nauplii | 24 | 49 | 4. | 8 | | | 20 | 7.2 | .92 | | 3.4 | | | | Melosira | | | 1 | | | - [| 1 | | | | 3.4 | 43.0 | | | Fragillaria | 25
217 | 30 | 68 | - 1 | 4 | | 24.5 | 6.6 | .05 | | 3.4 | 45.4 | 7.5 | | Asterionella | 217 | 320 | 64 | 1 | 7 | | Ì | | | 1 | | 10.4 | 1.5 | | Anabena | 8 | 12 | | | | | | - 1 | | | | | - 1 | | Clathrocyctis | 5,004 | | 935 | 614 | | | | | | | | | | | Oscillatoria | | | 196 | 59 | | | | | | | | | İ | | yngbya | 1 | 1,207 | 72 | 1 30 | | | | | | - 1 | | | - | TABLE 66. LAKE: SNOW LAKE Date: 9/2/30 | Species | | Plankto | 11 | | | | | | | | | | |--|-------------------------|--------------|------------|-------|-------|---|------------------|----------------------|------|----|-----------------|--------------| | Continue | Species | 0-5 | 5-10 | 10-15 | 15-24 | | D | Т | 0 | % | CO ₂ | СР | | Diaptomus | Ceratium | 1.400 | 169 | | 55 | | | 20.2 | 5.40 | | 0 | 35.8 | | Polyarthra 102 8 | Dinobryum
Mallomonas | 1,156
836 | 204
162 | 38 | | | | | | | | | | Daphnia | Triarthra | | | | | | 6
7
8
9 | 18.3
16.3
11.1 | 2.70 | | -1.50
3.02 | 36.8
41.4 | | Bosmina | | .8 | | | 5.6 | | 10 | 10 | | | 1 | - 1 | | Diaptomus | Bosmina | .8 | | | Ì | | 12 | 9.4 | .42 | | 3.02 | 41.8 | | Displanting 1 | | | | | į | | 15 | | .11 | | 4.02 | 42.4 | | Nauplii | Diaptomus | .8 | 12 | 3.2 | | | 1 | | | ļ | 1 | | | Nauplii | Cyclops | 12.8 | 55 | 12.8 | | | i | | | | 1 59 | 19.4 | | Melosira 128 115 81 89 24.5 6.7 Fragillaria 7,436 1,416 430 17 Asterionella Anabena 238 149 4 Clathrocyctis 1,587 473 1,320 115 Oscillatoria 793 349 45 16 | Nauplii | 16.8 | 27 | 8 | 1 | 1 | 20 | | .06 | | 3.02 | 12.1 | | Melosira 128 115 81 55 55 55 55 55 | Corethra | ļ | | | 1.6 | | | | | | | | | Fragiliaria | Melosira | 128 | 115 | 81 | 1 | | 24.5 | 6.7 | 1 | | i | j | | Anabena 238 149 4 Clathrocyctis 1,587 473 1,320 115 Oscillatoria 793 349 45 16 | Fragillaria | 7,436 | 1,416 | 430 | 17 | | | | 1 | | | | | Anabena 2.06 | Asterionella | | | į | Ì | i | | | | | ĺ | 1 1 | | Oscillatoria 793 349 45 16 | Anabena | 238 | 149 | | 4 | | | | | | | ì | | Oscillatoria 150 Oat 10 76 | Clathrocyctis | 1,587 | 473 | 1,320 | 115 | | | | | | | | | Lyngbya 499 281 13 76 | Oscillatoria | 793 | 349 | 45 | 16 | | | | | | | | | | Lyngbya | 499 | 281 | 13 | 76 | | | | | _\ | | <u> </u> | TABLE 67. LAKE: SNOW LAKE Date: 9/7/30 Date: 8/1/80 | r | Plank | ton | | | | | D | issolved | Gases | | | |---|-----------------------------------|------------------------------|------------------------|-----------|---|---------|--------------|--------------|-------|--------------|----------------------| | Species | 0-5 | 5-1 | 0 10-1 | 5 15-20 | | D | Т | 0 | % | CO | Cb | | Difflugia
Ceratium
Uroglea
Dinobryum
Mellomonas
Aneura | 1,011
951
399
512
179 | 456
217
81
55
12 | 123
6.4
17
55 | 30 | | S
2 | 22.2
21.6 | 5.45
5.58 | | -1.4
-3.2 | | | Polyarthra
Triarthra | 42
17 | 29.8 | 3 | 0.5 | | 4
6 | 21.9 | 5.40 | | -1.4 | | | Daphnia
Ostracod | | 1.6 | | 4 | | 8
10 | 13
10 | 1.87 | | 1.4 | 34.8
40.8
40.8 | | Diaptomus | 3.2 | | | .8 | | 12 | 8.9 | .70 | | 1.6 | 42 | | Cyclops | 21.6 | 26.4 | 8 11.2 | 1.6 | | | 0.0 | .50 | | 2 | 41.6 | | Nauplii
Corethra | 36 | 24 | 6.4 | 4.8 | | 20 | 7.3 | .62 | | 2.4 | 42 | | Melosira
Fragillaria
Asterionella | 59
311 | 115
477 | 217
159 | 85.
29 | | 24 | 6.6 | .09 | | 2.2 | 44 | | Anabena | 119 | 85 | | 17 | | | | | İ | | | | Clathrocyctis | 1 | 421 | 571 | 166 | | | | | | | | | Oscillatoria
Lyngbya | 1 | | 294
793 | 123
55 | į | | | | | | | TABLE 68. LAKE: TURKEY (Big) (LaGrange and Steuben) Date: 8/18/30 ### Plankton | | | | | | | | | | | 1 1 | i | |---------------------|-------------|------|-------|-------|---|------|------|------|---|-----------------|------| | Species | 0-5 | 5-10 | 10-15 | 15-20 | | D | т | 0 | % | CO ₂ | Cb | | | | 157 | | | | s | 23.5 | 4.70 | | -1.6 | 33.8 | | Ceratium | 1,105 | | | l | ļ | 2 | 23.4 | 5.07 | | -2.0 | 34.6 | | Dinobryum
* | 1,177
25 | 64 | | | 1 | 4 | 23.3 | 5.19 | | -1.4 | 33.4 | | Aneura
Hexarthra | 123
8.5 | 8.5 | 1 | 1 | | 6 | 18.3 | 2.61 | | 0 | 38.8 | | Polyarthra | 8.5 | 4.2 | Ì | ì | l | | | 1 | | .4 | 46.8 | | Noltholca | 0.0 | 7.2 | | 1 | | 8 | 12.5 | .21 | | 1 | 46.8 | | Daphnia | 20 | 8 | ļ | į. | 1 | 10 | 11.5 | .10 | İ | .4 | 1 1 | | Dapinia | | | | 1 | 1 | 12.5 | 11.1 | .08 | 1 | .4 | 49.0 | | | | 1 | | | 1 | 1 | ì | 1 | | 1 | | | Diaptomus | 14 | 3.2 | | | | 1 | | | | | | | Diaptomus | 14
14 | 3.2 | 1 | 1 | 1 | i | 1 | 1 | | 1 | | | Cyclops | 16 | 4 | | 1 | | 1 | 1 | | | | 1 | | Nauplii | 115 | 12.8 | 1 | 1 | | 1 | | | | 1 | | | | İ | 1 | ì | | | 1 | | | | 1 | 1 | | Melosira | 951 | 358 | 1 | | 1 | | | | | | | | Fragillaria | 21 | - | 1 | | | | | | | | | | Asterionella | 12 | 1 | | | - | | | | 1 | | 1 | | Anabena | 21 | 8 | - | 1 | | 1 | | | | | 1 | | Clathrocyctis | 166 | 166 | | | | | | | | | | | Oscillatoria | 1,122 | 302 | | | | | 1 | | 1 | İ | į | | Lyngbya | | 34 | | | - | | | | | | | # TABLE 69.
LAKE: NORTH TWIN Date: 9/2/30 Plankton | Q., | | | | | | | | Di | ssolved | Gases | | | |---|----------------|-----------|-------|-------|-----|----|------|------|---------|-------|------|-----| | Species | 0-5 | 5-10 | 10-15 | 15-20 | | D | Т | 0 | % | CO | Cb | рН | | Ceratium | 495 | 98 | | | | s | 20.0 | | | | | PIL | | Dinobryum | 861 | 209 | | | | 2 | 23.8 | 6.16 | | -3.0 | 31.0 | 8.2 | | Aneura | 72 | 46 | | | | | 23.8 | 6.13 | 104 | -3.0 | 31.0 | 8.2 | | Polyarthra | 81 | 8 | | | İ | 4 | 23.3 | 6.36 | 107 | 2.8 | 31.4 | 8.2 | | Noltholea | | 38 | | | - 1 | 6 | 21.3 | 5.50 | | -1.0 | 31.4 | 8.2 | | Daphnia | 6.4 | 1 1 | | . | | 8 | 15.5 | .41 | | 0 | 38.2 | 7.5 | | | | | | 1 | | 11 | 12.2 | .32 | | 1.0 | 21.6 | 7.4 | | Diaptomus
Cyclops
Nauplii | 24
15
21 | 4 4.8 | | | | | | | | | | | | Melosira
Fragillaria
Asterionella | 34
1,501 | 76
631 | | | | | | | | | | | | Anabena | 25 | 25 | | | | | | | | | | - 1 | | Clathrocyctis | 1 1 | 78 | i | | 1 | | | | | - 1 | - 1 | | | Oscillatoria | 1 1 | 40 | | | | | - 1 | | | | | - 1 | | yngbya | | 15 | | | | | | | | | | | # TABLE 70. # LAKE: SOUTH TWIN Date: 9/2/30 ### Plankton | Species | 0-5 | 5-10 | 10-15 | 15-20 | | D | Т | 0 | % | CO2 | Cb | | |---------------|-----|------|-------|-------|---|----|----------|------|-----|------|------|---| | | | 162 | 42 | | | s | 23.8 | 6.25 | 106 | -3.2 | 29.8 | | | Ceratium | 182 | 1 | i . | | | 2 | 23.8 | 6.18 | 105 | 2 | 29.6 | | | Dinobryum | 55 | 16 | 17 | | 1 | 4 | 23.3 | 6.18 | 104 | -2.4 | 29.8 | | | Aneura | 46 | 68 | 25 | | | Į. | 21.66 | | 102 | -2.0 | 30.0 | | | Polyarthra | 166 | 42 | 8 | | į | 6 | i | 6.12 | 100 | 0 | 36.8 | Ì | | Noltholea | 1 | | 12 | | 1 | 8 | 19.4 | 1 | | 1.0 | 38.4 | 1 | | Daphnia | 5.6 | 4 | | 1 | 1 | 10 | 11 | 1.86 | | 1 | 39.6 | Į | | (Ampirion | 1 | | | 1 | | 12 | 9.4 | .38 | ì | 1.2 | 38.6 | - | | | 1 | | | | | 15 | 9.1 | 0 | | 1.6 | 44.4 | 1 | | Diaptomus | 17 | 11.2 | 2.4 | Ì | | 1 | 1 | | | 1 | | İ | | Cyclops | 57 | 24 | 6.4 | l | | | | | İ | | | į | | Nauplii | 44 | 12 | 5.6 | | | | | 1 | | | | Ì | | 1 | | | | 1 | | 1 | | | İ | | | Ì | | Melosira | 34 | 89 | 38 | į | | | | | | 1 | | į | | Fragillaria | 349 | 243 | 101 | 1 | İ | | | ì | | | 1 | - | | Asterionella | | 12 | 1 | | | | | | | | | 1 | | Anabena | 55 | 106 | 12 | | ļ | | | | | | į | | | Clathrocyctis | 712 | 307 | 200 | 1 | | | | | | | | | | Oscillatoria | 230 | 153 | 46 | | | 1 | | | | | 1 | | | Lyngbya | 4 | 1 | | | - | | <u> </u> | | | | | _ | TABLE 71. LAKE: WALLEN LAKE Date: 8/24/30 # Plankton | 1 | | | | | | | | | | | | | |------------------------------------|-------------|-------|-------|-------|-----|------|------|------|-----|------|------|-----| | Spacies | 0-5 | 5-13 | 10-15 | 15-20 | | D | Т | 0 | % | CO2 | Сь | pН | | Ceratium
Difflugia
Dinobryum | 1,361
81 | 25 | | | | s | 23.4 | 5.69 | | -2.0 | 39.4 | 8.3 | | * Aneura | 136
153 | 4 | 1 | | | 2 | 22.3 | 5.67 | | -1.4 | 39.6 | 8.2 | | Polyarthra | 199 | 34 | | | | 4 | 22.2 | 5.68 | | -2.0 | 39.4 | 8.2 | | Hexarthra
Noltholea | 21 | 4 | _ | | | 6 | 16.9 | 23.8 | | 1.0 | 50.0 | 7.7 | | | j | 4 | j | | | 8 | 11.9 | 0 | | 2.4 | 51.0 | 7.7 | | Daphnia | 13.6 | 5.6 | | | | 10 | 11.1 | 0 | | 4.0 | 51.0 | 7.1 | | Diaphonosona | 6.4 | | 1 | 1 | - 1 | | | | | | 1 | | | į | | | 1 | | | 13.5 | 10.5 | 0 | | .2 | 52.4 | 7.1 | | Diaptomus | 13.6 | .8 | | 1 | - | | [| - 1 | | ł | 1 | j | | Cyclops | 56 | 12 | - | İ | | - 1 | i | | | 1 | j | | | Nauplii | 110 | 29 | | | - | | | - 1 | | | | | | Corethra | | 102 | | | | - | | | | ĺ | ĺ | | | Melosira | 4,906 | 541 | i | | ٠ | İ | 1 | | | | | | | Fragillaria | 183 | 29 | | | - | | | - 1 | - 1 | ĺ | | | | Asterionella | 12 | | - 1 | | | İ | | | i | | į | İ | | Anabena | 208 | 63 | | | | | | | | | 1 | | | Clathrocyctis | 2,338 | 2,453 | | | - | | | | į | | 1 | | | Oscillatoria | 780 | 294 | | | - | | | | į | | | - 1 | | Lyngbya | 59 | 3,366 | | | | | - 1 | | | | İ | |